Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol NMR ; 78(1): 19-30, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38102490

RESUMO

A recently developed homonuclear dipolar recoupling scheme, Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO), was applied to record two-dimensional (2D) 15N-15N correlations on uniformly 15N-labeled GB1 powders. A major feature exploited in these 15N-15N correlations was AL FRESCO's remarkably low RF power demands, which enabled seconds-long mixing schemes when establishing direct correlations. These 15N-15N mixing schemes proved efficient regardless of the magic-angle spinning (MAS) rate and, being nearly free from dipolar truncation effects, they enabled the detection of long-range, weak dipolar couplings, even in the presence of strong short-range dipolar couplings. This led to a connectivity information that was significantly better than that obtained with spontaneously proton-driven, 15N spin-diffusion experiments. An indirect approach producing long-range 15N-15N correlations was also tested, relying on short (ms-long) 1HN-1HN mixings schemes while applying AL FRESCO chirped pulses along the 15N channel. These indirect mixing schemes produced numerous long-distance Ni-Ni±n (n = 2 - 5) correlations, that might be useful for characterizing three-dimensional arrangements in proteins. Once again, these AL FRESCO mediated experiments proved more informative than variants based on spin-diffusion-based 1HN-1HN counterparts.


Assuntos
Peptídeos , Proteínas , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Imageamento por Ressonância Magnética , Prótons
2.
Biochemistry ; 61(21): 2358-2365, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219173

RESUMO

Protein aggregation is initiated by structural changes from native polypeptides to cytotoxic oligomers, which form cross-ß structured amyloid. Identification and characterization of oligomeric intermediates are critically important for understanding not only the molecular mechanism of aggregation but also the cytotoxic nature of amyloid oligomers. Preparation of misfolded oligomers for structural characterization is, however, challenging because of their transient, heterogeneous nature. Here, we report two distinct misfolded transthyretin (TTR) oligomers formed through different oligomerization pathways. A pathogenic TTR variant with a strong aggregation propensity (L55P) was used to prepare misfolded oligomers at physiological pH. Our mechanistic studies showed that the full-length TTR initially forms small oligomers, which self-assemble into short protofibrils at later stages. Enzymatic cleavage of the CD loop was also used to induce the formation of N-terminally truncated oligomers, which was detected in ex vivo cardiac TTR aggregates extracted from the tissues of patients. Structural characterization of the oligomers using solid-state nuclear magnetic resonance and circular dichroism revealed that the two TTR misfolded oligomers have distinct molecular conformations. In addition, the proteolytically cleaved TTR oligomers exhibit a higher surface hydrophobicity, suggesting the presence of distinct oligomerization pathways for TTR oligomer formation. Cytotoxicity assays also revealed that the cytotoxicity of cleaved oligomers is stronger than that of the full-length TTR oligomers, indicating that hydrophobicity might be an important property of toxic oligomers. These comparative biophysical analyses suggest that the toxic cleaved TTR oligomers formed through a different misfoling pathway may adopt distinct structural features that produce higher surface hydrophobicity, leading to the stronger cytotoxic activities.


Assuntos
Amiloidose , Pré-Albumina , Humanos , Pré-Albumina/química , Dobramento de Proteína , Amiloide/química , Conformação Proteica , Proteínas Amiloidogênicas
3.
J Magn Reson ; 343: 107304, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36228539

RESUMO

Overhauser dynamic nuclear polarization (ODNP) NMR of solutions at high fields is usually mediated by scalar couplings that polarize the nuclei of heavier, electron-rich atoms. This leaves 1H-detected NMR outside the realm of such studies. This study presents experiments that deliver 1H-detected NMR experiments on relatively large liquid volumes (60 âˆ¼ 100 µL) and at high fields (14.1 T), while relying on ODNP enhancements. To this end 13C NMR polarizations were first enhanced by relying on a mechanism that utilizes e--13C scalar coupling interactions; the nuclear spin alignment thus achieved was then passed on to neighboring 1H for observation, by a reverse INEPT scheme relying on one-bond JCH-couplings. Such 13C →1H polarization transfer ported the 13C ODNP gains into the 1H, permitting detection at higher frequencies and with higher potential sensitivities. For a model solution of labeled 13CHCl3 comixed with a nitroxide-based TEMPO derivative as polarizing agent, an ODNP enhancement factor of ca. 5x could thus be imparted to the 1H signal. When applied to bigger organic molecules like 2-13C-phenylacetylene and 13C8-indole, ODNP enhancements in the 1.2-3x range were obtained. Thus, although handicapped by the lower γ of the 13C, enhancements could be imparted on the 1H thermal acquisitions in all cases. We also find that conventional 1H-13C nuclear Overhauser enhancements (NOEs) are largely absent in these solutions due to the presence of co-dissolved radicals, adding negligible gains and playing negligible roles on the scalar e-→13C ODNP transfer. Potential rationalizations of these effects as well as extensions of these experiments, are briefly discussed.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Espectroscopia de Ressonância Magnética , Elétrons , Indóis
4.
J Struct Biol X ; 6: 100070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899175

RESUMO

Fungal infections cause high mortality in immunocompromised individuals, which has emerged as a significant threat to human health. The efforts devoted to the development of antifungal agents targeting the cell wall polysaccharides have been hindered by our incomplete picture of the assembly and remodeling of fungal cell walls. High-resolution solid-state nuclear magnetic resonance (ss NMR) studies have substantially revised our understanding of the polymorphic structure of polysaccharides and the nanoscale organization of cell walls in Aspergillus fumigatus and multiple other fungi. However, this approach requires 13C/15N-enrichment of the sample being studied, severely restricting its application. Here we employ the dynamic nuclear polarization (DNP) technique to compare the unlabeled cell wall materials of A. fumigatus and C. albicans prepared using both liquid and solid media. For each fungus, we have identified a highly conserved carbohydrate core for the cell walls of conidia and mycelia, and from liquid and solid cultures. Using samples prepared in different media, the recently identified function of α-glucan, which packs with chitin to form the mechanical centers, has been confirmed through conventional ss NMR measurements of polymer dynamics. These timely efforts not only validate the structural principles recently discovered for A. fumigatus cell walls in different morphological stages, but also open up the possibility of extending the current investigation to other fungal materials and cellular systems that are challenging to label.

5.
J Magn Reson ; 337: 107176, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35272112

RESUMO

Homonuclear isotropic mixing modules allow J-coupled spins to exchange magnetization even when separated by chemical shift offsets that exceed their couplings. This is exploited in TOtal Correlation SpectroscopY (TOCSY) experiments and its variants, which facilitate these homonuclear polarization exchanges by applying broadband RF pulses. These then establish an effective Hamiltonian in which chemical shift offsets are erased, while J-coupling terms -including flip-flop components- remain active. The polarization that these non-secular terms will transfer among systems of chemically inequivalent sites over the course of a mixing period, are widely used modules in 1D and in multidimensional liquid-state NMR. Homonuclear correlation experiments are also common in solids NMR, particularly among X = 13C or 15N nuclei. Solids NMR experiments are often challenged by high-power RF demands which have led to a family of homonuclear solid-state correlation experiments that avoid pulsing on the nuclei of interest, and focus instead on the 1Hs that are bonded to them. These solid experiments usually reintroduce/strengthen 1H-X dipolar couplings; these, in conjunction with assistance from rotational resonance effects, bring back the truncated X-X dipolar interactions and facilitate the generation of cross peaks. The present study explores whether a similar goal can be achieved for solution-state counterparts, based on the reintroduction of truncated flip-flop terms in the J-coupling Hamiltonian via the pulsing on other, heteronuclear species. A proposal to achieve this is derived, and the resulting HOmonucleaR Recoupling by hEteroNuclear DecOUplingS (HORRENDOUS) approach to provide correlations between like nuclei without pulsing on them, is demonstrated.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
6.
J Magn Reson ; 335: 107144, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35085899

RESUMO

Here, we describe a method for obtaining a dynamic nuclear polarization (DNP)-enhanced double-quantum filtered (DQF) two-dimensional (2D) dipolar 13C-13C correlation spectra of bone-tissue material at natural 13C abundance. DNP-enhanced DQF 2D dipolar 13C-13C spectra were obtained using a few different mixing times of the dipolar-assisted rotational resonance (DARR) scheme and these spectra were compared to a conventional 2D through-space double-quantum (DQ)-single-quantum (SQ) correlation spectrum. While this scheme can only be used for an assignment purpose to reveal the carbon-carbon connectivity within a residue, the DQF 13C-13C dipolar correlation scheme introduced here can be used to obtain longer distance carbon-carbon constraints. A DQF pulse block is placed before the DARR mixing scheme for removing dominant 13C single-quantum (SQ) signals because these SQ 13C signals are overwhelmingly large compared to those 13C-13C dipolar cross-peaks generated and therefore saturate the dynamic range of the NMR detection. This approach exhibits strong enough 2D cross-peaks in a dipolar 13C-13C correlation spectrum and potentially provides pairwise 13C-13C dipolar constraints because the dipolar truncation effect as well as multi-step signal propagations involving a spin cluster that contains more than two spins can be ignored probabilistically. To obtain fast signal averaging, AsymPolPOK was used to provide a short 1H DNP signal build-up time (1.3 s) and to expedite our MAS DNP NMR acquisitions while still maintaining a satisfactory DNP enhancement factor (ε = 50). Under long DARR mixing, a t1-noise-like artifact was observed at a site that possesses a large chemical shift anisotropy (CSA) and a few different strategies to address this problem were discussed.


Assuntos
Materiais Biocompatíveis , Imageamento por Ressonância Magnética , Anisotropia , Carbono , Espectroscopia de Ressonância Magnética/métodos
7.
J Phys Chem B ; 125(18): 4757-4766, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33929847

RESUMO

Structural stability of various collagen-containing biomaterials such as bones and cartilage is still a mystery. Despite the spectroscopic development of several decades, the detailed mechanism of collagen interaction with citrate in bones and glycosaminoglycans (GAGs) in the cartilage extracellular matrix (ECM) in its native state is unobservable. We present a significant advancement to probe the collagen interactions with citrate and GAGs in the ECM of native bones and cartilage along with specific/non-specific interactions inside the collagen assembly at the nanoscopic level through natural-abundance dynamic nuclear polarization-based solid-state nuclear magnetic resonance spectroscopy. The detected molecular-level interactions between citrate-collagen and GAG-collagen inside the native bone and cartilage matrices and other backbone and side-chain interactions in the collagen assembly are responsible for the structural stability and other biomechanical properties of these important classes of biomaterials.


Assuntos
Materiais Biocompatíveis , Colágeno , Cartilagem , Matriz Extracelular , Glicosaminoglicanos
8.
Magn Reson Chem ; 59(9-10): 1009-1023, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33634894

RESUMO

Solid-state NMR (SSNMR) spectroscopy of integer-spin quadrupolar nuclei is important for the molecular-level characterization of a variety of materials and biological solids; of the integer spins, 2 H (S = 1) is by far the most widely studied, due to its usefulness in probing dynamical motions. SSNMR spectra of integer-spin nuclei often feature very broad powder patterns that arise largely from the effects of the first-order quadrupolar interaction; as such, the acquisition of high-quality spectra continues to remain a challenge. The broadband adiabatic inversion cross-polarization (BRAIN-CP) pulse sequence, which is capable of cross-polarization (CP) enhancement over large bandwidths, has found success for the acquisition of SSNMR spectra of integer-spin nuclei, including 14 N (S = 1), especially when coupled with Carr-Purcell/Meiboom-Gill pulse sequences featuring frequency-swept WURST pulses (WURST-CPMG) for T2 -based signal enhancement. However, to date, there has not been a systematic investigation of the spin dynamics underlying BRAIN-CP, nor any concrete theoretical models to aid in its parameterization for applications to integer-spin nuclei. In addition, the BRAIN-CP/WURST-CPMG scheme has not been demonstrated for generalized application to wideline or ultra-wideline (UW) 2 H SSNMR. Herein, we provide a theoretical description of the BRAIN-CP pulse sequence for spin-1/2 → spin-1 CP under static conditions, featuring a set of analytical equations describing Hartmann-Hahn matching conditions and numerical simulations that elucidate a CP mechanism involving polarization transfer, coherence exchange, and adiabatic inversion. Several experimental examples are presented for comparison with theoretical models and previously developed integer-spin CP methods, demonstrating rapid acquisition of 2 H NMR spectra from efficient broadband CP.

9.
Chemphyschem ; 21(4): 284-294, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851424

RESUMO

An efficient mixing scheme is introduced for establishing two-dimensional (2D) homonuclear correlations based on dipolar couplings. This mixing scheme achieves broadband dipolar recoupling using remarkably low powers even under ultrafast magic-angle spinning (MAS) rates. This Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO) method applies a series of weak frequency-chirped pluses on the 1 H channel, for performing efficient 13 C-13 C magnetization transfers leading to cross peaks between sites separated over small or large chemical shift differences. The mixing scheme is nearly free from dipolar truncation effects, and thanks to the low RF powers it involves it can act over long mixing times (≥1.5 sec). Key considerations required for optimizing this chirped pulse mixing scheme are discussed, and the new kind of correlations that can emerge from this method are demonstrated using uniformly 13 C-labeled Barstar as test protein sample.


Assuntos
Proteínas de Bactérias/química , Ressonância Magnética Nuclear Biomolecular
10.
Phys Chem Chem Phys ; 21(38): 21200-21204, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31310269

RESUMO

Dynamic Nuclear Polarization (DNP) can increase the sensitivity of Nuclear Magnetic Resonance (NMR), but it is challenging in the liquid state at high magnetic fields. In this study we demonstrate significant enhancements of NMR signals (up to 70 on 13C) in the liquid state by scalar Overhauser DNP at 14.1 T, with high resolution (∼0.1 ppm) and relatively large sample volume (∼100 µL).

11.
Biochemistry ; 58(25): 2814-2821, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31132261

RESUMO

An increasing body of evidence suggests that aggregation-prone proteins associated with various neurodegenerative diseases synergistically promote their mutual aggregation, leading to the co-occurrence of multiple neurodegenerative diseases in the same patient. Here we investigated teh molecular basis of synergistic interactions between the two pathological proteins, tau and α-synuclein, using various biophysical techniques including transmission electron microscopy (TEM), circular dichroism (CD), and solution and solid-state NMR. Our biophysical analyses of α-synuclein aggregation in the absence and presence of tau reveal that tau monomers promote the formation of α-synuclein oligomers and subsequently fibril formation. Solution NMR results also indicate that monomeric forms of tau selectively interact with the C-terminal region of the α-synuclein monomer, accelerating α-synuclein aggregation. In addition, a combined use of TEM and solid-state NMR spectroscopy reveals that the synergistic interactions lead to the formation of toxic α-synuclein aggregates with a distinct morphology and molecular conformation. The filamentous α-synuclein aggregates as well as α-synuclein monomers were also able to induce tau aggregation.


Assuntos
Agregados Proteicos , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Linhagem Celular Tumoral , Dicroísmo Circular , Humanos , Microscopia Eletrônica de Transmissão , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Multimerização Proteica , alfa-Sinucleína/química , Proteínas tau/química
12.
Nanomaterials (Basel) ; 9(3)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823357

RESUMO

Self-assembled metal nanoparticle-polymer nanocomposite particles as nanoreactors are a promising approach for performing liquid phase reactions using water as a bulk solvent. In this work, we demonstrate rapid, scalable self-assembly of metal nanoparticle catalyst-polymer nanocomposite particles via Flash NanoPrecipitation. The catalyst loading and size of the nanocomposite particles can be tuned independently. Using nanocomposite particles as nanoreactors and the reduction of 4-nitrophenol as a model reaction, we study the fundamental interplay of reaction and diffusion. The induction time is affected by the sequence of reagent addition, time between additions, and reagent concentration. Combined, our experiments indicate the induction time is most influenced by diffusion of sodium borohydride. Following the induction time, scaling analysis and effective diffusivity measured using NMR indicate that the observed reaction rate are reaction- rather than diffusion-limited. Furthermore, the intrinsic kinetics are comparable to ligand-free gold nanoparticles. This result indicates that the polymer microenvironment does not de-activate or block the catalyst active sites.

13.
Sci Rep ; 9(1): 33, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631096

RESUMO

Characterization of small oligomers formed at an early stage of amyloid formation is critical to understanding molecular mechanism of pathogenic aggregation process. Here we identified and characterized cytotoxic oligomeric intermediates populated during transthyretin (TTR) aggregation process. Under the amyloid-forming conditions, TTR initially forms a dimer through interactions between outer strands. The dimers are then associated to form a hexamer with a spherical shape, which serves as a building block to self-assemble into cytotoxic oligomers. Notably, wild-type (WT) TTR tends to form linear oligomers, while a TTR variant (G53A) prefers forming annular oligomers with pore-like structures. Structural analyses of the amyloidogenic intermediates using circular dichroism (CD) and solid-state NMR reveal that the dimer and oligomers have a significant degree of native-like ß-sheet structures (35-38%), but with more disordered regions (~60%) than those of native TTR. The TTR variant oligomers are also less structured than WT oligomers. The partially folded nature of the oligomeric intermediates might be a common structural property of cytotoxic oligomers. The higher flexibility of the dimer and oligomers may also compensate for the entropic loss due to the oligomerization of the monomers.


Assuntos
Pré-Albumina/metabolismo , Pré-Albumina/toxicidade , Agregação Patológica de Proteínas , Desnaturação Proteica , Multimerização Proteica , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Pré-Albumina/química , Conformação Proteica
14.
Cell Death Discov ; 4: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210816

RESUMO

Cocaine is a highly abused drug that causes psychiatric and neurological problems. Its entry into neurons could alter cell-biochemistry and contribute in the manifestation of early pathological symptoms. We have previously shown the acute cocaine effects in rat C6 astroglia-like cells and found that these cells were highly sensitive to cocaine in terms of manifesting certain pathologies known to underlie psychological disorders. The present study was aimed to discern acute cocaine effects on the early onset of various changes in Neuro-2a (N2a) cells. Whole-cell patch-clamp recording of differentiated cells displayed the functional voltage-gated Na+ and K+ channels, which demonstrated the neuronal characteristics of the cells. Treatment of these cells with acute cocaine (1 h) at in vivo (nM to µM) and in vitro (mM) concentrations revealed that the cells remained almost 100% viable. Cocaine administration at 6.25 µM or 4 mM doses significantly reduced the inward currents but had no significant effect on outward currents, indicating the Na+ channel-blocking activity of cocaine. While no morphological change was observed at in vivo doses, treatment at in vitro doses altered the morphology, damaged the neurites, and induced cytoplasmic vacuoles; furthermore, general mitochondrial activity and membrane potential were significantly decreased. Mitochondrial dysfunction enabled the cells switch to anaerobic glycolysis, evidenced by dose-dependent increases in lactate and H2S, resulting unaltered ATP level in the cells. Further investigation on the mechanism of action unfolded that the cell's resistance to cocaine was through the activation of nuclear factor E2-related factor-2 (Nrf-2) gene and subsequent increase of antioxidants (glutathione [GSH], catalase and GSH peroxidase [GPx]). The data clearly indicate that the cells employed a detoxifying strategy against cocaine. On a broader perspective, we envision that extrapolating the knowledge of neuronal resistance to central nervous system (CNS) diseases could delay their onset or progression.

15.
Solid State Nucl Magn Reson ; 94: 31-53, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30125798

RESUMO

We explore the use of cross-polarization magic-angle spinning (CPMAS) methods incorporating an adiabatic frequency sweep in a standard Hartman-Hahn CPMAS pulse scheme, to achieve signal enhancements in solid-state NMR spectra of rare spins under fast MAS spinning rates, including spin-1/2, integer spin, and half-integer spin nuclides. These experiments, dubbed Broadband Adiabatic INversion Cross-Polarization Magic-Angle Spinning (BRAIN-CPMAS) experiments, involve an adiabatic inversion pulse on the S-channel of a rare spin nuclide while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). The signal enhancement imparted by this CP scheme on the S-spin is broadbanded, while employing low RF field strengths on both I- and S-channels. A feature demanded by these BRAIN-CPMAS methods is to impose a selective adiabatic frequency sweep over a single MAS spinning centerband or sideband, to avoid interference between the MAS modulation and sweeps over multiple sidebands. Upon implementing this swept-CP method, a number of MAS-driven processes happen, including broadband zero- and double-quantum CP transfers, and MAS-driven rotary-resonance phenomena. When this CP method is applied to integer and half-integer quadrupolar nuclei at very fast MAS spinning rates, a favorable double-quantum CP condition is found that can be easily achieved, and avoids the level-crossings among various ms energy levels that complicate quadrupolar CPMAS NMR experiments along lines first shown by Alex Vega. An additional CP mechanism was found in the 1H-2H case, involving static-like zero-quantum CP modes driven by a quadrupole-modulated RF-dipolar zero-order recoupling under MAS. All these phenomena were examined using average Hamiltonian theory, numerical simulations, and experiments on model compounds. Sensitivity-enhanced, distortion-free CP over wide bandwidths were predicted and observed for S = 1/2 and for S = 1 (2H) under fast MAS rates. BRAIN-CPMAS also delivered undistorted central transition NMR spectra of half-integer quadrupolar nuclei, while utilizing low RF field strengths that avoid complex level-crossing effects under high MAS rates.

16.
J Magn Reson ; 289: 35-44, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29459343

RESUMO

Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 µL, i.e. 3 mm diameter NMR tubes).

17.
J Magn Reson ; 277: 131-142, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28285143

RESUMO

The use of frequency-swept radiofrequency (rf) pulses for enhancing signals in the magic-angle spinning (MAS) spectra of half-integer quadrupolar nuclides was explored. The broadband adiabatic inversion cross-polarization magic-angle spinning (BRAIN-CPMAS) method, involving an adiabatic inversion pulse on the S-channel and a simultaneous rectangular spin-lock pulse on the I-channel (1H), was applied to I(1/2)→S(3/2) systems. Optimal BRAIN-CPMAS matching conditions were found to involve low rf pulse strengths for both the I- and S-spin channels. At these low and easily attainable rf field strengths, level-crossing events among the energy levels |3/2〉,|1/2〉,|-1/2〉,|-3/2〉 that are known to complicate the CPMAS of quadrupolar nuclei, are mostly avoided. Zero- and double-quantum polarization transfer modes, akin to those we have observed for I(1/2)→S(1/2) polarization transfers, were evidenced by these analyses even in the presence of the quadrupolar interaction. 1H-23Na and 1H-11B BRAIN-CPMAS conditions were experimentally explored on model compounds by optimizing the width of the adiabatic sweep, as well as the rf pulse powers of the 1H and 23Na/11B channels, for different MAS rates. The experimental data obtained on model compounds containing spin-3/2 nuclides, matched well predictions from numerical simulations and from an average Hamiltonian theory model. Extensions to half-integer spin nuclides with higher spins and potential applications of this BRAIN-CPMAS approach are discussed.

18.
J Chem Phys ; 146(10): 104201, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28298111

RESUMO

Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from 1H (I = 1/2) to 2H spins (S = 1) undergoing fast MAS (νr = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the 1H-2H CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero-quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak 2H rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {|1⟩,|0⟩,|-1⟩} mS energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal 2H MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.

19.
J Chem Phys ; 142(6): 064201, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25681899

RESUMO

Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ((13)C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ((1)H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero- and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6⋅γB1 (s) were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed.

20.
J Am Chem Soc ; 136(6): 2630-6, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24432974

RESUMO

Water-soluble derivatives of gadolinium-containing metallofullerenes have been considered to be excellent candidates for new magnetic resonance imaging (MRI) contrast agents because of their high relaxivity and characteristic encapsulation of the lanthanide ions (Gd(3+)), preventing their release into the bioenvironment. The trimetallic nitride template endohedral metallofullerenes (TNT EMFs) have further advantages of high stability, high relative yield, and encapsulation of three Gd(3+) ions per molecule as illustrated by the previously reported nearly spherical, Gd3N@I(h)-C80. In this study, we report the preparation and functionalization of a lower-symmetry EMF, Gd3N@C(s)-C84, with a pentalene (fused pentagons) motif and an egg-shaped structure. The Gd3N@C84 derivative exhibits a higher (1)H MR relaxivity compared to that of the Gd3N@C80 derivative synthesized the same way, at low (0.47 T), medium (1.4 T), and high (9.4 T) magnetic fields. The Gd3N@C(s)-C84 derivative exhibits a higher hydroxyl content and aggregate size, as confirmed by X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS) experiments, which could be the main reasons for the higher relaxivity.


Assuntos
Meios de Contraste/química , Fulerenos/química , Gadolínio/química , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA