Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Stress ; 25(1): 227-234, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35666099

RESUMO

Neurovascular coupling ensures rapid and precise delivery of O2 and nutrients to active brain regions. Chronic stress is known to disturb neurovascular signaling with grave effects on brain integrity. We hypothesized that stress-induced neurovascular disturbances depend on stress susceptibility. Wistar male rats were exposed to 8 weeks of chronic mild stress. Stressed rats with anhedonia-like behavior and with preserved hedonic state were identified from voluntary sucrose consumption. In brain slices from nonstressed, anhedonic, and hedonic rats, neurons and astrocytes showed similar intracellular Ca2+ responses to neuronal excitation. Parenchymal arterioles in brain slices from nonstressed, anhedonic, and hedonic rats showed vasodilation in response to neuronal excitation. This vasodilation was dependent on inward rectifying K+ channel (Kir2) activation. In hedonic rats, this vasodilation was transient and followed by vasoconstriction insensitive to Kir2 channel inhibition with 100 µM BaCl2. Isolated arteries from hedonic rats showed increased contractility. Elevation of bath K+ relaxed isolated middle cerebral arteries in a concentration-dependent and Kir2-dependent manner. The vasorelaxation to 20-24 mM K+ was reduced in arteries from hedonic rats. The expression of voltage-gated K+ channels, Kv7.4, was reduced in the cerebral arteries from hedonic rats, whereas the expression of arterial inward-rectifying K+ channels, Kir2.1 was similar to that of nonstressed and anhedonic rats. We propose that preserved hedonic state is associated with increased arterial contractility caused by reduced hyperpolarizing contribution of Kv7.4 channels leading to biphasic cerebrovascular responses to neuronal excitation. These findings reveal a novel potential coping mechanism associated with altered neurovascular signaling.


Assuntos
Estresse Psicológico , Vasodilatação , Animais , Arteríolas/fisiologia , Masculino , Ratos , Ratos Wistar , Vasoconstrição , Vasodilatação/fisiologia
2.
Front Behav Neurosci ; 16: 885849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600987

RESUMO

Exposure to severe, uncontrollable and long-lasting stress is a strong risk factor for the development of numerous mental and somatic disorders. Animal studies document that chronic stress can alter neuronal morphology and functioning in limbic brain structures such as the prefrontal cortex. Mitochondria are intracellular powerhouses generating chemical energy for biochemical reactions of the cell. Recent findings document that chronic stress can lead to changes in mitochondrial function and metabolism. Here, we studied putative mitochondrial damage in response to chronic stress in neurons of the medial prefrontal cortex. We performed a systematic quantitative ultrastructural analysis to examine the consequences of 9-weeks of chronic mild stress on mitochondria number and morphology in the infralimbic cortex of adult male rats. In this preliminary study, we analyzed 4,250 electron microscopic images and 67000 mitochondria were counted and examined in the brains of 4 control and 4 stressed rats. We found significantly reduced number of mitochondria in the infralimbic cortex of the stressed animals, but we could not detect any significant alteration in mitochondrial morphology. These data support the concept that prolonged stress can lead to mitochondrial loss. This in turn may result in impaired energy production. Reduced cellular energy may sensitize the neurons to additional injuries and may eventually trigger the development of psychopathologies.

3.
J Alzheimers Dis ; 87(1): 259-272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275551

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia worldwide. Despite decades of investigation, the etiology of AD is not fully understood, although emerging evidence suggest that chronic environmental and psychological stress plays a role in the mechanisms and contributes to the risk of developing AD. Thus, dissecting the impact of stress on the brain could improve our understanding of the pathological mechanisms. OBJECTIVE: We aimed to study the effect of chronic stress on the hippocampal proteome in male APPPS1 transgenic mice and wildtype (WT) littermates. METHODS: APPPS1 and WT mice were subjected to 4 weeks of chronic stress followed by 3 weeks of continued diurnal disruption. Hippocampal tissue was used for proteomics analysis using label-free quantitative DIA based LC-MS/MS analysis. RESULTS: We identified significantly up- and downregulated proteins in both APPPS1 and WT mice exposed to chronic stress compared to the control groups. Via interaction network mapping, significant proteins could be annotated to specific pathways of mitochondrial function (oxidative phosphorylation and TCA cycle), metabolic pathways, AD pathway and synaptic functions (long term potentiation). In WT mice, chronic stress showed the highest impact on complex I of the oxidative phosphorylation pathway, while in APPPS1 mice this pathway was compromised broadly by chronic stress. CONCLUSION: Our data shows that chronic stress and amyloidosis additively contribute to mitochondrial damage in hippocampus. Although these results do not explain all effects of chronic stress in AD, they add to the scientific knowledge on the topic.


Assuntos
Doença de Alzheimer , Espectrometria de Massas em Tandem , Doença de Alzheimer/patologia , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos
4.
J Alzheimers Dis ; 87(2): 685-699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342093

RESUMO

BACKGROUND: Modulation of serotonergic signaling by treatment with selective serotonin reuptake inhibitors (SSRIs) has been suggested to mitigate amyloid-ß (Aß) pathology in Alzheimer's disease, in addition to exerting an anti-depressant action. OBJECTIVE: To investigate the efficacy of chronic treatment with the SSRI paroxetine, in mitigating Aß pathology and Aß plaque-induced microgliosis in the hippocampus of 18-month-old APPswe/PS1ΔE9 mice. METHODS: Plaque-bearing APPswe/PS1ΔE9 and wildtype mice were treated with paroxetine per os at a dose of 5 mg/kg/day, from 9 to 18 months of age. The per os treatment was monitored by recording of the body weights and serum paroxetine concentrations, and by assessment of the serotonin transporter occupancy by [3H]DASB-binding in wildtype mice. Additionally, 5,7-dihydroxytryptamine was administered to 9-month-old APPswe/PS1ΔE9 mice, to examine the effect of serotonin depletion on Aß pathology. Aß pathology was evaluated by Aß plaque load estimation and the Aß42/Aß40 ratio by ELISA. RESULTS: Paroxetine treatment led to > 80% serotonin transporter occupancy. The treatment increased the body weight of wildtype mice, but not of APPswe/PS1ΔE9 mice. The treatment had no effect on the Aß plaque load (p = 0.39), the number and size of plaques, or the Aß plaque-induced increases in microglial numbers in the dentate gyrus. Three months of serotonin depletion did not significantly impact the Aß plaque load or Aß42/Aß40 ratio in APPswe/PS1ΔE9 mice at 12 months. CONCLUSION: Our results show that chronic treatment with the SSRI paroxetine does not mitigate Aß pathology and Aß plaque-induced microgliosis in the hippocampus of APPswe/PS1ΔE9 mice.


Assuntos
Doença de Alzheimer , Amiloidose , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Amiloide , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Paroxetina/farmacologia , Paroxetina/uso terapêutico , Placa Amiloide/tratamento farmacológico , Placa Amiloide/patologia , Presenilina-1/genética , Serotonina , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
5.
Br J Pharmacol ; 179(6): 1146-1186, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34822719

RESUMO

Major depressive disorder is a leading cause of disability worldwide. Because conventional therapies are ineffective in many patients, novel strategies are needed to overcome treatment-resistant depression (TRD). Limiting factors of successful drug development in the last decades were the lack of (1) knowledge of pathophysiology, (2) translational animal models and (3) objective diagnostic biomarkers. Here, we review novel drug targets and drug candidates currently investigated in Phase I-III clinical trials. The most promising approaches are inhibition of glutamatergic neurotransmission by NMDA and mGlu5 receptor antagonists, modulation of the opioidergic system by κ receptor antagonists, and hallucinogenic tryptamine derivates. The only registered drug for TRD is the NMDA receptor antagonist, S-ketamine, but add-on therapies with second-generation antipsychotics, certain nutritive, anti-inflammatory and neuroprotective agents seem to be effective. Currently, there is an intense research focus on large-scale, high-throughput omics and neuroimaging studies. These results might provide new insights into molecular mechanisms and potential novel therapeutic strategies.


Assuntos
Transtorno Depressivo Maior , Transtorno Depressivo Resistente a Tratamento , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Desenvolvimento de Medicamentos , Humanos
6.
Genes Brain Behav ; 20(8): e12766, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34382343

RESUMO

Neuropsychiatric disturbances (NPDs) are considered hallmarks of Alzheimer's disease (AD). Nevertheless, treatment of these symptoms has proven difficult and development of safe and effective treatment options is hampered by the limited understanding of the underlying pathophysiology. Thus, robust preclinical models are needed to increase knowledge of NPDs in AD and develop testable hypotheses and novel treatment options. Abnormal activity of the hypothalamic-pituitary-adrenal (HPA) axis is implicated in many psychiatric symptoms and might contribute to both AD and NPDs development and progression. We aimed to establish a mechanistic preclinical model of NPD-like behavior in the APPPS1 mouse model of AD and wildtype (WT) littermates. In APPPS1 and WT mice, we found that chronic stress increased anxiety-like behavior and altered diurnal locomotor activity suggestive of sleep disturbances. Also, chronic stress activated the HPA axis, which, in WT mice, remained heightened for additional 3 weeks. Chronic stress caused irregular expression of circadian regulatory clock genes (BMAL1, PER2, CRY1 and CRY2) in both APPPS1 and WT mice. Interestingly, APPPS1 and WT mice responded differently to chronic stress in terms of expression of serotonergic markers (5-HT1A receptor and MAOA) and inflammatory genes (IL-6, STAT3 and ADMA17). These findings indicate that, although the behavioral response to chronic stress might be similar, the neurobiochemical response was different in APPPS1 mice, which is an important insight in the efforts to develop safe and effective treatments options for NPDs in AD patients. Further work is needed to substantiate these findings.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Estresse Psicológico/genética , Transcriptoma , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
7.
Sci Rep ; 11(1): 9113, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907240

RESUMO

Depression-associated cognitive impairments are among the most prevalent and persistent symptoms during remission from a depressive episode and a major risk factor for relapse. Consequently, development of antidepressant drugs, which also alleviate cognitive impairments, is vital. One such potential antidepressant is vortioxetine that has been postulated to exhibit both antidepressant and pro-cognitive effects. Hence, we tested vortioxetine for combined antidepressant and pro-cognitive effects in male Long-Evans rats exposed to the chronic mild stress (CMS) paradigm. This well-established CMS paradigm evokes cognitive deficits in addition to anhedonia, a core symptom of depression. Learning and memory performance was assessed in the translational touchscreen version of the paired-associates learning task. To identify the mechanistic underpinning of the neurobehavioural results, transcriptional profiling of genes involved in the stress response, neuronal plasticity and genes of broad relevance in neuropsychiatric pathologies were assessed. Vortioxetine substantially relieved the anhedonic-like state in the CMS rats and promoted acquisition of the cognitive test independent of hedonic phenotype, potentially due to an altered cognitive strategy. Minor alterations in gene expression profiling in prefrontal cortex and hippocampus were found. In summary, our findings suggest that vortioxetine exhibits an antidepressant effect as well as behavioural changes in a translational learning task.


Assuntos
Antidepressivos/farmacologia , Cognição/efeitos dos fármacos , Vortioxetina/farmacologia , Anedonia/efeitos dos fármacos , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Aprendizagem , Masculino , Ratos Long-Evans , Estresse Fisiológico
8.
J Pers Med ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809485

RESUMO

Depression is one of the most prevalent mental diseases worldwide. Patients with psychiatric diseases often have a history of childhood neglect, indicating that early-life experiences predispose to psychiatric diseases in adulthood. Two strong models were used in the present study: the maternal separation/early deprivation model (MS) and the chronic mild stress model (CMS). In both models, we found changes in the expression of a number of genes such as Creb and Npy. Strikingly, there was a clear regulation of expression of four genes involved in the AP-1 complex: c-Fos, c-Jun, FosB, and Jun-B. Interestingly, different expression levels were observed depending on the model, whereas the combination of the models resulted in a normal level of gene expression. The effects of MS and CMS on gene expression were associated with distinct histone methylation/acetylation patterns of all four genes. The epigenetic changes, like gene expression, were also dependent on the specific stressor or their combination. The obtained results suggest that single life events leave a mark on gene expression and the epigenetic signature of gene promoters, but a combination of different stressors at different life stages can further change gene expression through epigenetic factors, possibly causing the long-lasting adverse effects of stress.

9.
Cells ; 9(4)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326205

RESUMO

Major depressive disorder (MDD) is a severe illness imposing an increasing social and economic burden worldwide. Numerous rodent models have been developed to investigate the pathophysiology of MDD. One of the best characterized and most widely used models is the chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner. More than 2000 published studies used this model, mainly to assess novel compounds with potential antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological changes. However, the stress-induced cellular and molecular changes are important as they may serve as potential translational biomarkers and increase our understanding of the pathophysiology of MDD. Here, we summarize current knowledge on the structural and molecular alterations in the brain that have been described using the CMS model. We discuss the latest neuroimaging and postmortem histopathological data as well as molecular changes including recent findings on microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the available experimental data provide convincing evidence that the CMS model has a high translational value. Future studies examining the neurobiological changes in the CMS model in combination with clinically effective antidepressant drug intervention will likely deliver further valuable information on the pathophysiology of MDD.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Depressão/etiologia , Depressão/psicologia , Estresse Psicológico/complicações , Animais , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , MicroRNAs/genética , MicroRNAs/metabolismo
10.
Front Aging Neurosci ; 12: 56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210790

RESUMO

Alzheimer's disease (AD) is the most common form of dementia worldwide. It is mostly known for its devastating effect on memory and learning but behavioral alterations commonly known as neuropsychiatric disturbances (NPDs) are also characteristics of the disease. These include apathy, depression-like behavior, and sleep disturbances, and they all contribute to an increased caregiver burden and earlier institutionalization. The interaction between NPDs and AD pathology is not well understood, but the consensus is that they contribute to disease progression and faster decline. Consequently, recognizing and treating NPDs might improve AD pathology and increase the quality of life for both patients and caregivers. In this review article, we examine previous and current literature on apathy, depressive symptoms, and sleep disturbances in AD patients and preclinical AD mechanistic models. We hypothesize that tau accumulation, beta-amyloid (Aß) aggregation, neuroinflammation, mitochondrial damage, and loss of the locus coeruleus (LC)-norepinephrine (NE) system all collectively impact the development of NPDs and contribute synergistically to AD pathology. Targeting more than one of these processes might provide the most optimal strategy for treating NPDs and AD. The development of such clinical approaches would be preceded by preclinical studies, for which robust and reliable mechanistic models of NPD-like behavior are needed. Thus, developing effective preclinical research models represents an important step towards a better understanding of NPDs in AD.

12.
Genes Brain Behav ; 18(2): e12546, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548775

RESUMO

Major depressive disorder (MDD) is a leading contributor to the global burden of disease. However, the causal relationship of risk factors, such as genetic predisposition or experience of augmented stress, remain unknown. Numerous studies in humans and rodents have implicated brain-derived neurotrophic factor (BDNF) in MDD pathology, as a genetic risk factor and a factor regulated by stress. Until now, the majority of preclinical studies have employed genetically modified mice as their model of choice. However, mice display a limited behavioural repertoire and lack expression of circulating BDNF, which is present in rats and humans. Therefore, heterozygous BDNF (BDNF+/- ) rats were tested for affective behaviours and accompanying expression of key genes associated with affective disorders in the brain. We found that BDNF+/- rats, which have reduced BDNF levels in brain and plasma, displayed symptoms of anhedonia, a core symptom of MDD, and anxiety-like behaviour, but no behavioural despair or cognitive impairments. This was accompanied by changes in the expression of genes that are implicated in modulation of the stress response and affective disorders. Hence, glucocorticoid receptor, neuregulin 1 and disrupted-in-schizophrenia 1 gene expression were upregulated in the prefrontal cortex of BDFN+/- rats, whereas FK506 binding protein 5 levels were decreased in the hippocampus. We conclude that a reduction in BDNF levels alters expression of genes associated with affective disorders, which may contribute to the development of depressive-like symptoms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Fenótipo , Animais , Transtorno Depressivo Maior/metabolismo , Feminino , Heterozigoto , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
13.
Neurobiol Learn Mem ; 155: 287-296, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138691

RESUMO

Depression-associated cognitive impairments persist after remission from affective symptoms of major depressive disorder (MDD), decreasing quality of life and increasing risk of relapse in patients. Conventional antidepressants are ineffective in restoring cognitive functions. Therefore, novel antidepressants with improved efficacy for ameliorating cognitive symptoms are required. For tailoring such antidepressants, translational animal models are in demand. The chronic mild stress (CMS) model is a well-validated preclinical model of depression and known for eliciting the MDD core symptom "anhedonia" in stress-susceptible rats. Thus, cognitive performance was assessed in rats susceptible (depressive-like) or resilient to CMS and in unchallenged controls. The rodent analogue of the human touchscreen Paired-Associates Learning (PAL) task was used for cognitive assessment. Both stress groups exhibited a lack of response inhibition compared to controls while only the depressive-like group was impaired in task acquisition. The results indicate that cognitive deficits specifically associate with the anhedonic-like state rather than being a general consequence of stress exposure. Hence, we propose that the application of a translational touchscreen task on the etiologically valid CMS model, displaying depression-associated cognitive impairments, provides a novel platform for pro-cognitive and clinically pertinent antidepressant drug screening.


Assuntos
Disfunção Cognitiva/psicologia , Depressão/psicologia , Aprendizagem por Associação de Pares , Resiliência Psicológica , Estresse Psicológico/psicologia , Anedonia , Animais , Disfunção Cognitiva/etiologia , Condicionamento Operante , Depressão/complicações , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/psicologia , Modelos Animais de Doenças , Masculino , Ratos Long-Evans , Estresse Psicológico/complicações
14.
Front Cell Neurosci ; 12: 148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973870

RESUMO

Clinical and experimental data suggest that fronto-cortical GABAergic deficits contribute to the pathophysiology of major depressive disorder (MDD). To further test this hypothesis, we used a well characterized rat model for depression and examined the effect of stress on GABAergic neuron numbers and GABA-mediated synaptic transmission in the medial prefrontal cortex (mPFC) of rats. Adult male Wistar rats were subjected to 9-weeks of chronic mild stress (CMS) and based on their hedonic-anhedonic behavior they were behaviorally phenotyped as being stress-susceptible (anhedonic) or stress-resilient. Post mortem quantitative histopathology was used to examine the effect of stress on parvalbumin (PV)-, calretinin- (CR), calbindin- (CB), cholecystokinin- (CCK), somatostatin-(SST) and neuropeptide Y-positive (NPY+) GABAergic neuron numbers in all cortical subareas of the mPFC (anterior cingulate (Cg1), prelimbic (PrL) and infralimbic (IL) cortexes). In vitro, whole-cell patch-clamp recordings from layer II-III pyramidal neurons of the ventral mPFC was used to examine GABAergic neurotransmission. The cognitive performance of the animals was assessed in a hippocampal-prefrontal-cortical circuit dependent learning task. Stress exposure reduced the number of CCK-, CR- and PV-positive GABAergic neurons in the mPFC, most prominently in the IL cortex. Interestingly, in the stress-resilient animals, we found higher number of neuropeptide Y-positive neurons in the entire mPFC. The electrophysiological analysis revealed reduced frequencies of spontaneous and miniature IPSCs in the anhedonic rats and decreased release probability of perisomatic-targeting GABAergic synapses and alterations in GABAB receptor mediated signaling. In turn, pyramidal neurons showed higher excitability. Anhedonic rats were also significantly impaired in the object-place paired-associate learning task. These data demonstrate that long-term stress results in functional and structural deficits of prefrontal GABAergic networks. Our findings support the concept that fronto-limbic GABAergic dysfunctions may contribute to emotional and cognitive symptoms of MDD.

15.
Alzheimers Dement (N Y) ; 4: 215-223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29955664

RESUMO

INTRODUCTION: Treatment with selective serotonin reuptake inhibitors has been suggested to mitigate amyloid-ß (Aß) pathology in Alzheimer's disease, in addition to an antidepressant mechanism of action. METHODS: We investigated whether chronic treatment with paroxetine, a selective serotonin reuptake inhibitor, mitigates Aß pathology in plaque-bearing double-transgenic amyloid precursor protein (APP)swe/presenilin 1 (PS1)ΔE9 mutants. In addition, we addressed whether serotonin depletion affects Aß pathology. Treatments were assessed by measurement of serotonin transporter occupancy and high-performance liquid chromatography. The effect of paroxetine on Aß pathology was evaluated by stereological plaque load estimation and Aß42/Aß40 ratio by enzyme-linked immunosorbent assay. RESULTS: Contrary to our hypothesis, paroxetine therapy did not mitigate Aß pathology, and depletion of brain serotonin did not exacerbate Aß pathology. However, chronic paroxetine therapy increased mortality in APPswe/PS1ΔE9 transgenic mice. DISCUSSION: Our results question the ability of selective serotonin reuptake inhibitor therapy to ameliorate established Aß pathology. The severe adverse effect of paroxetine may discourage its use for disease-modifying purposes in Alzheimer's disease.

16.
Pharmacol Rep ; 70(3): 600-606, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680698

RESUMO

BACKGROUND: Previous clinical and preclinical studies have indicated that the N-methyl-d-aspartate (NMDA) receptor antagonist, memantine, has neuroprotective properties as well as antidepressant effects. The present study was designed to examine behavioral and molecular effects of memantine administration in rats subjected to the repeated unpredictable stress (RUS) paradigm. METHODS: Rats were split into four groups at random including control+saline, control+memantine, stressed+saline and stressed+memantine. After 10days of exposure to the RUS paradigm, rats were administered memantine (20mg/kg) intraperitoneally (ip) for 14days. Depression-like behavior and memory performance were assessed by measuring immobility time in the forced swim test and passive avoidance test, respectively. The mRNA levels of BDNF and TrkB in the prefrontal cortex and hippocampus were measured by real-time quantitative PCR. RESULTS: Our results demonstrated that the RUS paradigm caused depression-like behavior and impairment of memory retrieval in rats. We did not find significant changes in BDNF or TrkB mRNA levels in hippocampus, but mRNA levels of TrkB in the prefrontal cortex showed a significant downregulation. Administration of memantine reversed depression-like behavior and memory impairment and significantly increased BDNF and TrkB mRNA levels in both prefrontal cortex and hippocampus of stress exposed rats. CONCLUSIONS: Our study supports the hypothesis that drugs with antagonistic properties on the NMDA receptor, such as memantine, might be efficient in treatment of major depression. Our results also suggest that upregulated mRNA levels of BDNF and TrkB in the brain might be essential for antidepressant-like activity of memantine in stress exposed rats.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Memantina/farmacologia , Transtornos da Memória/tratamento farmacológico , RNA Mensageiro/metabolismo , Receptor trkB/metabolismo , Animais , Antidepressivos/farmacologia , Encéfalo/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/metabolismo , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo
17.
PLoS One ; 13(2): e0192329, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29432490

RESUMO

Chronic mild stress leads to depression in many cases and is linked to several debilitating diseases including mental disorders. Recently, neuronal tracing techniques, stereology, and immunohistochemistry have revealed persistent and significant microstructural alterations in the hippocampus, hypothalamus, prefrontal cortex, and amygdala, which form an interconnected system known as the stress circuit. Most studies have focused only on this circuit, however, some studies indicate that manipulation of sensory and motor systems may impact genesis and therapy of mood disorders and therefore these areas should not be neglected in the study of brain microstructure alterations in response to stress and depression. For this reason, we explore the microstructural alterations in different cortical regions in a chronic mild stress model of depression. The study employs ex-vivo diffusion MRI (d-MRI) to assess cortical microstructure in stressed (anhedonic and resilient) and control animals. MRI is followed by immunohistochemistry to substantiate the d-MRI findings. We find significantly lower extracellular diffusivity in auditory cortex (AC) of stress groups and a significantly higher fractional anisotropy in the resilient group. Neurite density was not found to be significantly higher in any cortical ROIs in the stress group compared to control, although axonal density is higher in the stress groups. We also report significant thinning of motor cortex (MC) in both stress groups. This is in agreement with recent clinical and preclinical studies on depression and similar disorders where significant microstructural and metabolic alterations were found in AC and MC. Our findings provide further evidence that the AC and MC are sensitive towards stress exposure and may extend our understanding of the microstructural effects of stress beyond the stress circuit of the brain. Progress in this field may provide new avenues of research to help in diagnosis and treatment intervention for depression and related disorders.


Assuntos
Córtex Cerebral/patologia , Depressão/patologia , Modelos Animais de Doenças , Estresse Psicológico , Animais , Córtex Cerebral/diagnóstico por imagem , Doença Crônica , Depressão/diagnóstico por imagem , Imagem de Tensor de Difusão , Masculino , Ratos , Ratos Wistar
18.
Front Cell Neurosci ; 12: 24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29440995

RESUMO

Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/µm3 and the density of symmetric synapses was 0.5/µm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely to form the anatomical basis for the impaired functioning of this brain area. Indeed, impaired functioning of the prefrontal cortex, such as cognitive deficits are common in stressed individuals as well as in depressed patients.

19.
Neuroimage ; 167: 342-353, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29196269

RESUMO

Chronic mild stress (CMS) induced depression elicits several debilitating symptoms and causes a significant economic burden on society. High variability in the symptomatology of depression poses substantial impediment to accurate diagnosis and therapy outcome. CMS exposure induces significant metabolic and microstructural alterations in the hippocampus (HP), prefrontal cortex (PFC), caudate-putamen (CP) and amygdala (AM), however, recovery from these maladaptive changes are limited and this may provide negative effects on the therapeutic treatment and management of depression. The present study utilized anhedonic rats from the unpredictable CMS model of depression to study metabolic recovery in the ventral hippocampus (vHP) and microstructural recovery in the HP, AM, CP, and PFC. The study employed 1H MR spectroscopy (1H MRS) and in-vivo diffusion MRI (d-MRI) at the age of week 18 (week 1 post CMS exposure) week 20 (week 3 post CMS) and week 25 (week 8 post CMS exposure) in the anhedonic group, and at the age of week 18 and week 22 in the control group. The d-MRI data have provided an array of diffusion tensor metrics (FA, MD, AD, and RD), and fast kurtosis metrics (MKT, WL and WT). CMS exposure induced a significant metabolic alteration in vHP, and significant microstructural alterations were observed in the HP, AM, and PFC in comparison to the age match control and within the anhedonic group. A significantly high level of N-acetylaspartate (NAA) was observed in vHP at the age of week 18 in comparison to age match control and week 20 and week 25 of the anhedonic group. HP and AM showed significant microstructural alterations up to the age of week 22 in the anhedonic group. PFC showed significant microstructural alterations only at the age of week 18, however, most of the metrics showed significantly higher value at the age of week 20 in the anhedonic group. The significantly increased NAA concentration may indicate impaired catabolism due to astrogliosis or oxidative stress. The significantly increased WL in the AM and HP may indicate hypertrophy of AM and reduced volume of HP. Such metabolic and microstructural alterations could be useful in disease diagnosis and follow-up treatment intervention in depression and similar disorders.


Assuntos
Tonsila do Cerebelo , Depressão , Imagem de Difusão por Ressonância Magnética/métodos , Hipocampo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Estresse Psicológico , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Anedonia/fisiologia , Animais , Depressão/diagnóstico por imagem , Depressão/metabolismo , Depressão/patologia , Modelos Animais de Doenças , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Ratos , Ratos Long-Evans , Estresse Psicológico/diagnóstico por imagem , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
20.
Physiol Behav ; 184: 83-90, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29129610

RESUMO

Patients suffering from depression-associated cognitive impairments often recover incompletely after remission from the core symptoms of depression (lack of energy, depressed mood and anhedonia). This study aimed to set the basis for clinically relevant testing of cognitive impairments in a preclinical model of depression. Hence, we used the chronic mild stress (CMS) model of depression, which provokes the core symptom of anhedonia in a fraction of the stress exposed animals, while others remain resilient, and assessed the entire CMS groups' cognitive performance on the touchscreen operant platform. Specifically, we applied the pairwise discrimination (PD) and reversal task including a retention phase on Wistar and Long Evans controls and CMS exposed Long Evans rats. We observed differences between the albino Wistar and the pigmented Long Evans strain regarding performance in the PD and reversal task as well as in memory consolidation. CMS exposure did not alter learning and memory in the PD and reversal task, even though it altered affective behaviours in the elevated plus-maze and open field test. This is likely due to the heterogeneity of the CMS group, in which stress exposure elicited the expected range of phenotypes from anhedonic-like to resilient shown with the sucrose consumption test. Thus, our study suggests that pigmented rat strains, such as Long Evans, are superior to albino rats in the vision-based touchscreen studies. Furthermore, we propose investigation of the CMS subgroups in more complex, hippocampus-dependent tasks to refine a translational preclinical model of depression-induced cognitive impairments. Hence, this study increased awareness of strain-specific differences in touchscreen performance and added to the literature regarding the sensitivity of the PD and reversal task to stress-induced cognitive alterations.


Assuntos
Ansiedade/etiologia , Transtornos Psicomotores/etiologia , Estresse Psicológico/complicações , Análise de Variância , Animais , Discriminação Psicológica , Comportamento Exploratório/fisiologia , Preferências Alimentares/psicologia , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo/fisiologia , Ratos , Ratos Long-Evans , Ratos Wistar , Tempo de Reação/fisiologia , Retenção Psicológica/fisiologia , Reversão de Aprendizagem/fisiologia , Especificidade da Espécie , Sacarose/administração & dosagem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA