Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607024

RESUMO

Recombination among different phages sometimes facilitates their ability to grow on new hosts. Protocols to direct the evolution of phage host range, as might be used in the application of phage therapy, would then benefit from including steps to enable recombination. Applying mathematical and computational models, in addition to experiments using phages T3 and T7, we consider ways that a protocol may influence recombination levels. We first address coinfection, which is the first step to enabling recombination. The multiplicity of infection (MOI, the ratio of phage to cell concentration) is insufficient for predicting (co)infection levels. The force of infection (the rate at which cells are infected) is also critical but is more challenging to measure. Using both a high force of infection and high MOI (>1) for the different phages ensures high levels of coinfection. We also apply a four-genetic-locus model to study protocol effects on recombinant levels. Recombinants accumulate over multiple generations of phage growth, less so if one phage outgrows the other. Supplementing the phage pool with the low-fitness phage recovers some of this 'lost' recombination. Overall, fine tuning of phage recombination rates will not be practical with wild phages, but qualitative enhancement can be attained with some basic procedures.


Assuntos
Bacteriófagos , Coinfecção , Humanos , Bacteriófagos/genética , Recombinação Genética/genética
2.
Antibiotics (Basel) ; 11(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36551366

RESUMO

Background: The host ranges of individual phages tend to be narrow, yet many applications of phages would benefit from expanded host ranges. Empirical methods have been developed to direct the evolution of phages to attack new strains, but the methods have not been evaluated or compared for their consequences. In particular, how do different methods favor generalist (broad host range) phages over specialist phages? All methods involve exposing phages to two or more novel bacterial strains, but the methods differ in the order in which those hosts are presented through time: Parallel presentation, Sequential presentation, and Mixed presentation. Methods: We use a combination of simple analytical methods and numerical analyses to study the effect of these different protocols on the selection of generalist versus specialist phages. Results: The three presentation protocols have profoundly different consequences for the evolution of generalist versus specialist phages. Sequential presentation favors generalists almost to the exclusion of specialists, whereas Parallel presentation does the least so. However, other protocol attributes (the nature of dilution between transfers of phages to new cultures) also have effects on selection and phage maintenance. It is also noted that protocols can be designed to enhance recombination to augment evolution and to reduce stochastic loss of newly arisen mutants.

3.
Viruses ; 13(7)2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34372595

RESUMO

In microbial communities, viruses compete with each other for host cells to infect. As a consequence of competition for hosts, viruses evolve inhibitory mechanisms to suppress their competitors. One such mechanism is superinfection exclusion, in which a preexisting viral infection prevents a secondary infection. The bacteriophage ΦX174 exhibits a potential superinfection inhibition mechanism (in which secondary infections are either blocked or resisted) known as the reduction effect. In this auto-inhibitory phenomenon, a plasmid containing a fragment of the ΦX174 genome confers resistance to infection among cells that were once permissive to ΦX174. Taking advantage of this plasmid system, we examine the inhibitory properties of the ΦX174 reduction effect on a range of wild ΦX174-like phages. We then assess how closely the reduction effect in the plasmid system mimics natural superinfection inhibition by carrying out phage-phage competitions in continuous culture, and we evaluate whether the overall competitive advantage can be predicted by phage fitness or by a combination of fitness and reduction effect inhibition. Our results show that viral fitness often correctly predicts the winner. However, a phage's reduction sequence also provides an advantage to the phage in some cases, modulating phage-phage competition and allowing for persistence where competitive exclusion was expected. These findings provide strong evidence for more complex dynamics than were previously thought, in which the reduction effect may inhibit fast-growing viruses, thereby helping to facilitate coexistence.


Assuntos
Bacteriófagos/genética , Bacteriófagos/patogenicidade , Ecologia , Superinfecção/virologia , Vírus/genética , DNA Viral , Evolução Molecular , Aptidão Genética , Humanos , Superinfecção/prevenção & controle
4.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33045052

RESUMO

Natural selection acting on synonymous mutations in protein-coding genes influences genome composition and evolution. In viruses, introducing synonymous mutations in genes encoding structural proteins can drastically reduce viral growth, providing a means to generate potent, live-attenuated vaccine candidates. However, an improved understanding of what compositional features are under selection and how combinations of synonymous mutations affect viral growth is needed to predictably attenuate viruses and make them resistant to reversion. We systematically recoded all nonoverlapping genes of the bacteriophage ΦX174 with codons rarely used in its Escherichia coli host. The fitness of recombinant viruses decreases as additional deoptimizing mutations are made to the genome, although not always linearly, and not consistently across genes. Combining deoptimizing mutations may reduce viral fitness more or less than expected from the effect size of the constituent mutations and we point out difficulties in untangling correlated compositional features. We test our model by optimizing the same genes and find that the relationship between codon usage and fitness does not hold for optimization, suggesting that wild-type ΦX174 is at a fitness optimum. This work highlights the need to better understand how selection acts on patterns of synonymous codon usage across the genome and provides a convenient system to investigate the genetic determinants of virulence.


Assuntos
Bacteriófago phi X 174/genética , Códon , Genoma Viral , Epistasia Genética , Genes Virais , Aptidão Genética , Modelos Genéticos , Seleção Genética , Vacinas Virais
5.
ACS Synth Biol ; 9(1): 125-131, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31825605

RESUMO

Here we present a novel protocol for the construction of saturation single-site-and massive multisite-mutant libraries of a bacteriophage. We segmented the ΦX174 genome into 14 nontoxic and nonreplicative fragments compatible with Golden Gate assembly. We next used nicking mutagenesis with oligonucleotides prepared from unamplified oligo pools with individual segments as templates to prepare near-comprehensive single-site mutagenesis libraries of genes encoding the F capsid protein (421 amino acids scanned) and G spike protein (172 amino acids scanned). Libraries possessed greater than 99% of all 11 860 programmed mutations. Golden Gate cloning was then used to assemble the complete ΦX174 mutant genome and generate libraries of infective viruses. This protocol will enable reverse genetics experiments for studying viral evolution and, with some modifications, can be applied for engineering therapeutically relevant bacteriophages with larger genomes.


Assuntos
Bacteriófago phi X 174/genética , Engenharia Genética/métodos , Genoma Viral , Mutagênese , Sequência de Bases , Proteínas do Capsídeo/genética , Quebras de DNA de Cadeia Simples , DNA de Cadeia Simples/genética , Escherichia coli/genética , Vetores Genéticos , Mutação , Plasmídeos/genética
6.
Mob DNA ; 10: 22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139266

RESUMO

BACKGROUND: L1 retrotransposons have co-evolved with their mammalian hosts for the entire history of mammals and currently compose ~ 20% of a mammalian genome. B1 retrotransposons are dependent on L1 for retrotransposition and span the evolutionary history of rodents since their radiation. L1s were found to have lost their activity in a group of South American rodents, the Sigmodontinae, and B1 inactivation preceded the extinction of L1 in the same group. Consequently, a basal group of sigmodontines have active L1s but inactive B1s and a derived clade have both inactive L1s and B1s. It has been suggested that B1s became extinct during a long period of L1 quiescence and that L1s subsequently reemerged in the basal group. RESULTS: Here we investigate the evolutionary histories of L1 and B1 in the sigmodontine rodents and show that L1 activity continued until after the L1-extinct clade and the basal group diverged. After the split, L1 had a small burst of activity in the former group, followed by extinction. In the basal group, activity was initially low but was followed by a dramatic increase in L1 activity. We found the last wave of B1 retrotransposition was large and probably preceded the split between the two rodent clades. CONCLUSIONS: Given that L1s had been steadily retrotransposing during the time corresponding to B1 extinction and that the burst of B1 activity preceding B1 extinction was large, we conclude that B1 extinction was not a result of L1 quiescence. Rather, the burst of B1 activity may have contributed to L1 extinction both by competition with L1 and by putting strong selective pressure on the host to control retrotransposition.

7.
Spec Publ Tex Tech Univ Mus ; 71: 379-392, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-32095030

RESUMO

L1s are transposable elements that move by a copy-and-paste mechanism that continuously increases their copy number in the genome, such that each genome has a record of the L1 history in that host lineage. They make up about 20% of the genomes of eutherian mammals and have played a major role in shaping genome evolution. Chiroptera has the lowest average genome size among mammalian orders and the only documented case of L1 extinction affecting an entire mammalian family. Herein, L1 activity and extinction are characterized in all families of the order Chiroptera using a method that enriches for the youngest lineages of L1s in the genome. In addition to the previously reported L1 extinction in Pteropodidae, L1 extinction was documented to occur in Mormoops blainvilli, but this event did not affect all species of Mormoopidae. Further, there was no evidence of concordance between the evolution of L1s and their chiropteran host. There were two L1 lineages present before the divergence of all extant bats. Both lineages are extinct in the Pteropodidae. One or the other L1 lineage is extinct in almost all bat families, but Taphozous melanopogon maintains active members of both. Most intriguingly, some families within the Rhinolophoidea retain one active L1 lineage whereas other families retain the other, creating a deep discontinuity between L1 phylogeny and chiropteran phylogeny. These results indicate that there have been numerous losses of active L1 lineages over the history of chiropteran evolution, but that all chiropteran families except Pteropodidae have retained L1 activity.

8.
Theor Popul Biol ; 122: 97-109, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29198859

RESUMO

Fitness landscapes map genotypes to organismal fitness. Their topographies depend on how mutational effects interact - epistasis - andare important for understanding evolutionary processes such as speciation, the rate of adaptation, the advantage of recombination, and the predictability versus stochasticity of evolution. The growing amount of data has made it possible to better test landscape models empirically. We argue that this endeavor will benefit from the development and use of meaningful basic models against which to compare more complex models. Here we develop statistical and computational methods for fitting fitness data from mutation combinatorial networks to three simple models: additive, multiplicative and stickbreaking. We employ a Bayesian framework for doing model selection. Using simulations, we demonstrate that our methods work and we explore their statistical performance: bias, error, and the power to discriminate among models. We then illustrate our approach and its flexibility by analyzing several previously published datasets. An R-package that implements our methods is available in the CRAN repository under the name Stickbreaker.


Assuntos
Epistasia Genética , Aptidão Genética , Modelos Genéticos , Modelos Estatísticos , Bactérias/genética , Teorema de Bayes , Simulação por Computador , Genótipo , Modelos Lineares , Mutação , Análise de Regressão , Vírus/genética
9.
PeerJ ; 4: e2227, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547540

RESUMO

Parallelism is important because it reveals how inherently stochastic adaptation is. Even as we come to better understand evolutionary forces, stochasticity limits how well we can predict evolutionary outcomes. Here we sought to quantify parallelism and some of its underlying causes by adapting a bacteriophage (ID11) with nine different first-step mutations, each with eight-fold replication, for 100 passages. This was followed by whole-genome sequencing five isolates from each endpoint. A large amount of variation arose-281 mutational events occurred representing 112 unique mutations. At least 41% of the mutations and 77% of the events were adaptive. Within wells, populations generally experienced complex interference dynamics. The genome locations and counts of mutations were highly uneven: mutations were concentrated in two regulatory elements and three genes and, while 103 of the 112 (92%) of the mutations were observed in ≤4 wells, a few mutations arose many times. 91% of the wells and 81% of the isolates had a mutation in the D-promoter. Parallelism was moderate compared to previous experiments with this system. On average, wells shared 27% of their mutations at the DNA level and 38% when the definition of parallel change is expanded to include the same regulatory feature or residue. About half of the parallelism came from D-promoter mutations. Background had a small but significant effect on parallelism. Similarly, an analyses of epistasis between mutations and their ancestral background was significant, but the result was mostly driven by four individual mutations. A second analysis of epistasis focused on de novo mutations revealed that no isolate ever had more than one D-promoter mutation and that 56 of the 65 isolates lacking a D-promoter mutation had a mutation in genes D and/or E. We assayed time to lysis in four of these mutually exclusive mutations (the two most frequent D-promoter and two in gene D) across four genetic backgrounds. In all cases lysis was delayed. We postulate that because host cells were generally rare (i.e., high multiplicity of infection conditions developed), selection favored phage that delayed lysis to better exploit their current host (i.e., 'love the one you're with'). Thus, the vast majority of wells (at least 64 of 68, or 94%) arrived at the same phenotypic solution, but through a variety of genetic changes. We conclude that answering questions about the range of possible adaptive trajectories, parallelism, and the predictability of evolution requires attention to the many biological levels where the process of adaptation plays out.

10.
PLoS One ; 11(8): e0160410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27479005

RESUMO

Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.


Assuntos
Ebolavirus/fisiologia , Evolução Molecular , Doença pelo Vírus Ebola/virologia , África Ocidental/epidemiologia , Sequência de Aminoácidos , Surtos de Doenças , Ebolavirus/isolamento & purificação , Ebolavirus/metabolismo , Glicoproteínas/classificação , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/epidemiologia , Humanos , Mutagênese Sítio-Dirigida , Filogenia , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/classificação , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
12.
PeerJ ; 4: e1674, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925318

RESUMO

The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens.

13.
BMC Evol Biol ; 15: 220, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26444412

RESUMO

BACKGROUND: Defining factors that contributed to the fixation of a high number of underdominant chromosomal rearrangements is a complex task because not only molecular mechanisms must be considered, but also the uniqueness of natural history attributes of each taxon. Ideally, detailed investigation of the chromosome architecture of an organism and related groups, placed within a phylogenetic context, is required. We used multiple approaches to investigate the dynamics of chromosomal evolution in lineages of bats with considerable karyotypic variation, focusing on the different facets contributing to fixation of the exceptional chromosomal changes in Tonatia saurophila. Integration of empirical data with proposed models of chromosome evolution was performed to understand the probable conditions for Tonatia's karyotypic evolution. RESULTS: The trajectory of reorganization of chromosome blocks since the common ancestor of Glossophaginae and Phyllostominae subfamilies suggests that multiple tandem fusions, as well as disruption and fusions of conserved phyllostomid chromosomes were major drivers of karyotypic reshuffling in Tonatia. Considerable variation in the rates of chromosomal evolution between phyllostomid lineages was observed. Thirty-nine unique fusions and fission events reached fixation in Tonatia over a short period of time, followed by ~12 million years of chromosomal stasis. Physical mapping of repetitive DNA revealed an unusual accumulation of LINE-1 sequences on centromeric regions, probably associated with the chromosomal dynamics of this genus. CONCLUSIONS: Multiple rearrangements have reached fixation in a wave-like fashion in phyllostomid bats. Different biological features of Tonatia support distinct models of rearrangement fixation, and it is unlikely that the fixations were a result of solely stochastic processes in small ancient populations. Increased recombination rates were probably facilitated by expansion of repetitive DNA, reinforced by aspects of taxon reproduction and ecology.


Assuntos
Evolução Biológica , Quirópteros/classificação , Quirópteros/genética , Cromossomos de Mamíferos , Animais , Hibridização In Situ , Cariótipo , Modelos Genéticos , Filogenia
14.
PLoS One ; 9(11): e112988, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405628

RESUMO

Previous studies have shown that most random amino acid substitutions destabilize protein folding (i.e. increase the folding free energy). No analogous studies have been carried out for protein-protein binding. Here we use a structure-based model of the major coat protein in a simple virus, bacteriophage φX174, to estimate the free energy of folding of a single coat protein and binding of five coat proteins within a pentameric unit. We confirm and extend previous work in finding that most accessible substitutions destabilize both protein folding and protein-protein binding. We compare the pool of accessible substitutions with those observed among the φX174-like wild phage and in experimental evolution with φX174. We find that observed substitutions have smaller effects on stability than expected by chance. An analysis of adaptations at high temperatures suggests that selection favors either substitutions with no effect on stability or those that simultaneously stabilize protein folding and slightly destabilize protein binding. We speculate that these mutations might involve adjusting the rate of capsid assembly. At normal laboratory temperature there is little evidence of directional selection. Finally, we show that cumulative changes in stability are highly variable; sometimes they are well beyond the bounds of single substitution changes and sometimes they are not. The variation leads us to conclude that phenotype selection acts on more than just stability. Instances of larger cumulative stability change (never via a single substitution despite their availability) lead us to conclude that selection views stability at a local, not a global, level.


Assuntos
Bacteriófago phi X 174/genética , Proteínas do Capsídeo/genética , Modelos Moleculares , Mutação/genética , Estabilidade Proteica , Seleção Genética , Proteínas do Capsídeo/metabolismo , Ligação Proteica/genética , Conformação Proteica , Dobramento de Proteína , Temperatura
15.
PLoS Genet ; 10(9): e1004531, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25211013

RESUMO

Mammalian genomes comprise many active and fossilized retroelements. The obligate requirement for retroelement integration affords host genomes an opportunity to 'domesticate' retroelement genes for their own purpose, leading to important innovations in genome defense and placentation. While many such exaptations involve retroviruses, the L1TD1 gene is the only known domesticated gene whose protein-coding sequence is almost entirely derived from a LINE-1 (L1) retroelement. Human L1TD1 has been shown to play an important role in pluripotency maintenance. To investigate how this role was acquired, we traced the origin and evolution of L1TD1. We find that L1TD1 originated in the common ancestor of eutherian mammals, but was lost or pseudogenized multiple times during mammalian evolution. We also find that L1TD1 has evolved under positive selection during primate and mouse evolution, and that one prosimian L1TD1 has 'replenished' itself with a more recent L1 ORF1 from the prosimian genome. These data suggest that L1TD1 has been recurrently selected for functional novelty, perhaps for a role in genome defense. L1TD1 loss is associated with L1 extinction in several megabat lineages, but not in sigmodontine rodents. We hypothesize that L1TD1 could have originally evolved for genome defense against L1 elements. Later, L1TD1 may have become incorporated into pluripotency maintenance in some lineages. Our study highlights the role of retroelement gene domestication in fundamental aspects of mammalian biology, and that such domesticated genes can adopt different functions in different lineages.


Assuntos
Genoma/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Mamíferos/genética , Proteínas/genética , Animais , Evolução Biológica , Humanos , Camundongos , Filogenia , Retroelementos/genética , Roedores/genética
16.
BMC Genomics ; 15: 186, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24618421

RESUMO

BACKGROUND: Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution--some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 - 75 Gb, 12-74 Gb of which are lost from pre-somatic cell lineages at germline--soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. RESULTS: Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. CONCLUSIONS: Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.


Assuntos
Copépodes/genética , Genoma , Genômica , Sequências Repetitivas de Ácido Nucleico , Animais , Cromatina/genética , Evolução Molecular , Feminino , Dosagem de Genes , Variação Genética , Células Germinativas
17.
PLoS One ; 9(2): e88702, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24533140

RESUMO

BACKGROUND: Most clinical and natural microbial communities live and evolve in spatially structured environments. When changes in environmental conditions trigger evolutionary responses, spatial structure can impact the types of adaptive response and the extent to which they spread. In particular, localized competition in a spatial landscape can lead to the emergence of a larger number of different adaptive trajectories than would be found in well-mixed populations. Our goal was to determine how two levels of spatial structure affect genomic diversity in a population and how this diversity is manifested spatially. METHODOLOGY/PRINCIPAL FINDINGS: We serially transferred bacteriophage populations growing at high temperatures (40°C) on agar plates for 550 generations at two levels of spatial structure. The level of spatial structure was determined by whether the physical locations of the phage subsamples were preserved or disrupted at each passage to fresh bacterial host populations. When spatial structure of the phage populations was preserved, there was significantly greater diversity on a global scale with restricted and patchy distribution. When spatial structure was disrupted with passaging to fresh hosts, beneficial mutants were spread across the entire plate. This resulted in reduced diversity, possibly due to clonal interference as the most fit mutants entered into competition on a global scale. Almost all substitutions present at the end of the adaptation in the populations with disrupted spatial structure were also present in the populations with structure preserved. CONCLUSIONS/SIGNIFICANCE: Our results are consistent with the patchy nature of the spread of adaptive mutants in a spatial landscape. Spatial structure enhances diversity and slows fixation of beneficial mutants. This added diversity could be beneficial in fluctuating environments. We also connect observed substitutions and their effects on fitness to aspects of phage biology, and we provide evidence that some substitutions exclude each other.


Assuntos
Aclimatação/genética , Bacteriófagos/genética , Genoma Viral , Temperatura Alta , Bacteriófagos/fisiologia , Análise por Conglomerados , Meio Ambiente , Escherichia coli/virologia , Variação Genética , Genótipo , Mutação , Oligonucleotídeos/química , Fenótipo , Análise de Sequência de DNA
18.
PLoS One ; 8(3): e60401, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533679

RESUMO

Observing organisms that evolve in response to strong selection over very short time scales allows the determination of the molecular mechanisms underlying adaptation. Although dissecting these molecular mechanisms is expensive and time-consuming, general patterns can be detected from repeated experiments, illuminating the biological processes involved in evolutionary adaptation. The bacteriophage φX174 was grown for 50 days in replicate chemostats under two culture conditions: Escherichia coli C as host growing at 37°C and Salmonella typhimurium as host growing at 43.5°C. After 50 days, greater than 20 substitutions per chemostat had risen to detectable levels. Of the 97 substitutions, four occurred in all four chemostats, five arose in both culture conditions, eight arose in only the high temperature S. typhimurium chemostats, and seven arose only in the E. coli chemostats. The remaining substitutions were detected only in a single chemostat, however, almost half of these have been seen in other similar experiments. Our findings support previous studies that host recognition and capsid stability are two biological processes that are modified during adaptation to novel hosts and high temperature. Based upon the substitutions shared across both environments, it is apparent that genome replication and packaging are also affected during adaptation to the chemostat environment, rather than to temperature or host per se. This environment is characterized by a large number of phage and very few hosts, leading to competition among phage within the host. We conclude from these results that adaptation to a high density environment selects for changes in genome replication at both protein and DNA sequence levels.


Assuntos
Bacteriófago phi X 174/fisiologia , Evolução Molecular , Seleção Genética/genética , Bacteriófago phi X 174/genética , Escherichia coli/virologia , Salmonella typhimurium/virologia , Seleção Genética/fisiologia , Temperatura , Replicação Viral/genética , Replicação Viral/fisiologia
19.
Genetics ; 190(2): 655-67, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22095084

RESUMO

In relating genotypes to fitness, models of adaptation need to both be computationally tractable and qualitatively match observed data. One reason that tractability is not a trivial problem comes from a combinatoric problem whereby no matter in what order a set of mutations occurs, it must yield the same fitness. We refer to this as the bookkeeping problem. Because of their commutative property, the simple additive and multiplicative models naturally solve the bookkeeping problem. However, the fitness trajectories and epistatic patterns they predict are inconsistent with the patterns commonly observed in experimental evolution. This motivates us to propose a new and equally simple model that we call stickbreaking. Under the stickbreaking model, the intrinsic fitness effects of mutations scale by the distance of the current background to a hypothesized boundary. We use simulations and theoretical analyses to explore the basic properties of the stickbreaking model such as fitness trajectories, the distribution of fitness achieved, and epistasis. Stickbreaking is compared to the additive and multiplicative models. We conclude that the stickbreaking model is qualitatively consistent with several commonly observed patterns of adaptive evolution.


Assuntos
Adaptação Fisiológica/genética , Epistasia Genética , Evolução Molecular , Aptidão Genética , Modelos Genéticos , Algoritmos , Simulação por Computador , Mutação
20.
PLoS One ; 6(9): e25640, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980515

RESUMO

The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate that most, though not all, of the observed mutations are stabilizing.


Assuntos
Adaptação Biológica/genética , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microviridae/genética , Microviridae/fisiologia , Mutação , Temperatura , Adaptação Biológica/fisiologia , Entropia , Evolução Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA