Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2752, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177777

RESUMO

Hydroxyurea is an antimetabolite drug that induces fetal haemoglobin in sickle cell disease. However, its clinical usefulness in ß-thalassaemia is unproven. We conducted a randomised, double-blind, placebo-controlled clinical trial to evaluate the efficacy and safety of hydroxyurea in transfusion-dependent ß-thalassaemia. Sixty patients were assigned 1:1 to oral hydroxyurea 10-20 mg/kg/day or placebo for 6 months by stratified block randomisation. Hydroxyurea treatment did not alter the blood transfusion volume overall. However, a significantly higher proportion of patients on hydroxyurea showed increases in fetal haemoglobin percentage (89% vs. 59%; p < 0.05) and reductions in erythropoietic stress as measured by soluble transferrin receptor concentration (79% vs. 40%; p < 0.05). Based on fetal haemoglobin induction (> 1.5%), 44% of patients were identified as hydroxyurea-responders. Hydroxyurea-responders, required significantly lower blood volume (77 ± SD27ml/kg) compared to hydroxyurea-non-responders (108 ± SD24ml/kg; p < 0.01) and placebo-receivers (102 ± 28ml/kg; p < 0.05). Response to hydroxyurea was significantly higher in patients with HbE ß-thalassaemia genotype (50% vs. 0%; p < 0.01) and Xmn1 polymorphism of the γ-globin gene (67% vs. 27%; p < 0.05). We conclude that oral hydroxyurea increased fetal haemoglobin percentage and reduced erythropoietic stress of ineffective erythropoiesis in patients with transfusion-dependent ß-thalassaemia. Hydroxyurea reduced the transfusion burden in approximately 40% of patients. Response to hydroxyurea was higher in patients with HbE ß-thalassaemia genotype and Xmn1 polymorphism of the γ-globin gene.


Assuntos
Hidroxiureia/administração & dosagem , Talassemia beta/tratamento farmacológico , Administração Oral , Adolescente , Adulto , Transfusão de Sangue , Método Duplo-Cego , Feminino , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Humanos , Masculino , Polimorfismo Genético , Talassemia beta/sangue , Talassemia beta/genética
2.
Biofilm ; 3: 100045, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33718862

RESUMO

Pseudomonas fragi is the predominant bacterial species associated with spoiled aerobically stored chilled meat worldwide. It readily forms biofilms on meat under refrigerated temperature conditions used in the meat industry. Biofilm growth leads to slime development on meat which in turn becomes a major quality defect. To understand the genetic regulation that aids P. fragi to survive under chilled conditions used in the meat industry, as well to obtain an overview of the transcriptomic behavior of this organism when grown as biofilms, RNA sequencing was carried out for the main stages of the P. fragi 1793 biofilm. RNA was extracted at different stages of the biofilm cycle namely initiation, maturation and dispersal. At the same time, the biofilm growth was assessed by fluorescent staining and imaging using confocal laser scanning microscope. The results of RNA sequencing were verified by qRT-PCR using twelve genes that were most significantly up and down regulated at each stage. Differential expression analysis at biofilm maturation revealed 332 significantly upregulated genes and 37 downregulated genes relative to initiation. Differential expression analysis at biofilm dispersal reveled 658 upregulated and 275 downregulated genes relative to initiation. During biofilm maturation and dispersal, genes coding for flp family type IVb pilin, ribosome modulation factor, creatininase were the most upregulated genes while genes encoding for iron uptake systems including TonB-dependent siderophore receptor and taurine transport were significantly down regulated. The results show that protein synthesis and cellular multiplication cease after the biofilm population maximum has reached.

3.
Sci Rep ; 10(1): 16457, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020559

RESUMO

Psychrotrophic Pseudomonas species are the key spoilage bacteria of aerobically stored chilled meat. These organisms readily form biofilms on meat under refrigerated conditions leading to consumer rejection and associated economic losses. Limited information is available on the matrix composition of the biofilms formed by these bacteria. We quantified and characterized the main components of the matrix of mono-species biofilms of selected Pseudomonas fragi and Pseudomonas lundensis strains using chemical analysis and Raman spectroscopy. The biofilms were grown at 10 °C and 25 °C on nitro-cellulose membranes placed on surface sterilized beef cuts. Extra-cellular polymeric substances of the matrix were extracted in soluble and bound forms and were chemically assessed for total carbohydrates, proteins and extra-cellular DNA. Both Pseudomonas species showed a significant increase in total carbohydrates and total proteins when grown at 10 °C as compared to 25 °C. Extra-cellular DNA did not show a strong correlation with growth temperature. Raman spectra were obtained from planktonic bacteria and membrane grown biofilms at 10 °C and 25 °C. Higher levels of guanine were detected in planktonic cells as compared to biofilm cells. This study suggests that psychrotrophic Pseudomonas species may respond to cold stress by increasing extra-cellular polymer secretions.


Assuntos
Biofilmes/crescimento & desenvolvimento , Carne/microbiologia , Pseudomonas fragi/crescimento & desenvolvimento , Pseudomonas/crescimento & desenvolvimento , Animais , Bovinos , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Microbiologia de Alimentos/métodos , Pseudomonas/metabolismo , Pseudomonas fragi/metabolismo , Temperatura
4.
Biofouling ; 35(8): 840-855, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31558055

RESUMO

Psychrotrophic Pseudomonas species form biofilms on meat during refrigerated and temperature abuse conditions. Biofilm growth leads to slime formation on meat which is a key organoleptic degradation characteristic. Limited research has been undertaken characterising biofilms grown on meat during chilled aerobic storage. In this work, biofilms formed by two key meat spoilage organisms, Pseudomonas fragi and Pseudomonas lundensis were studied in situ using five strains from each species. Biofilm structures were studied using confocal microscope images, cellular arrangement, cell counts and biomass quantifications. This work demonstrated that highly dense, compact biofilms are a characteristic of P. fragi strains. P. lundensis formed biofilms with loosely arranged cells. The cells in P. fragi biofilm appear to be vertically oriented whereas this characteristic was absent in P. lundensis biofilms formed under identical conditions. Despite the continued access to nutrients, biofilms formed on meat by proteolytic Pseudomonas species dispersed after a population maximum was reached.


Assuntos
Biofilmes/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Carne/microbiologia , Pseudomonas/isolamento & purificação , Biomassa , Microbiologia de Alimentos , Armazenamento de Alimentos , Microscopia Confocal , Temperatura
5.
Compr Rev Food Sci Food Saf ; 18(5): 1622-1635, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33336914

RESUMO

Microbial spoilage of meat during chilled aerobic storage causes significant financial losses to the industry. Even with modern day preservation techniques, spoilage remains an unsolved problem. Spoilage of meat is a complex process that involves the activity of endogenous enzymes and microorganisms. Psychrotrophic Pseudomonas species are the key microorganisms that cause spoilage in aerobically stored chilled meat. Spoilage pseudomonads are highly robust and able to withstand stressful environmental conditions that would otherwise inhibit the growth of other spoilage organisms. In order to implement efficient control measures, and to minimize spoilage, a thorough understanding of the characteristics of spoilage pseudomonads is essential. This review focuses on the spoilage process and the key metabolic attributes of the main psychrotrophic spoilage Pseudomonas species to explain their predominance on meat over other psychrotrophic bacteria. This review also highlights less studied, but important, characteristics of psychrotrophic pseudomonads such as biofilm formation and quorum sensing in the context of meat spoilage. The importance of the use of model systems that are closely applicable to the food industry is also discussed in detail.

6.
Nano Lett ; 18(7): 4180-4187, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29902011

RESUMO

Biofilms and the rapid evolution of multidrug resistance complicate the treatment of bacterial infections. Antibiofilm agents such as metallic-inorganic nanoparticles or peptides act by exerting antibacterial effects and, hence, do not combat biofilms of antibiotics-resistant strains. In this Letter, we show that the block copolymer DA95B5, dextran- block-poly((3-acrylamidopropyl) trimethylammonium chloride (AMPTMA)- co-butyl methacrylate (BMA)), effectively removes preformed biofilms of various clinically relevant multidrug-resistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE V583), and Enteroccocus faecalis (OG1RF). DA95B5 self-assembles into core-shell nanoparticles with a nonfouling dextran shell and a cationic core. These nanoparticles diffuse into biofilms and attach to bacteria but do not kill them; instead, they promote the gradual dispersal of biofilm bacteria, probably because the solubility of the bacteria-nanoparticle complex is enhanced by the nanoparticle dextran shell. DA95B5, when applied as a solution to a hydrogel pad dressing, shows excellent in vivo MRSA biofilm removal efficacy of 3.6 log reduction in a murine excisional wound model, which is significantly superior to that for vancomycin. Furthermore, DA95B5 has very low in vitro hemolysis and negligible in vivo acute toxicity. This new strategy for biofilm removal (nanoscale bacterial debridement) is orthogonal to conventional rapidly developing resistance traits in bacteria so that it is as effective toward resistant strains as it is toward sensitive strains and may have widespread applications.


Assuntos
Biofilmes/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/administração & dosagem , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antibacterianos/efeitos adversos , Dextranos/administração & dosagem , Dextranos/química , Humanos , Metacrilatos/administração & dosagem , Metacrilatos/química , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Testes de Sensibilidade Microbiana , Nanopartículas/química , Enterococos Resistentes à Vancomicina/crescimento & desenvolvimento , Enterococos Resistentes à Vancomicina/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA