Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
FASEB J ; 37(10): e23198, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37742307

RESUMO

DOCK (dedicator of cytokinesis) is an 11-member family of typical guanine nucleotide exchange factors (GEFs) expressed in the brain, spinal cord, and skeletal muscle. Several DOCK proteins have been implicated in maintaining several myogenic processes such as fusion. We previously identified DOCK3 as being strongly upregulated in Duchenne muscular dystrophy (DMD), specifically in the skeletal muscles of DMD patients and dystrophic mice. Dock3 ubiquitous KO mice on the dystrophin-deficient background exacerbated skeletal muscle and cardiac phenotypes. We generated Dock3 conditional skeletal muscle knockout mice (Dock3 mKO) to characterize the role of DOCK3 protein exclusively in the adult muscle lineage. Dock3 mKO mice presented with significant hyperglycemia and increased fat mass, indicating a metabolic role in the maintenance of skeletal muscle health. Dock3 mKO mice had impaired muscle architecture, reduced locomotor activity, impaired myofiber regeneration, and metabolic dysfunction. We identified a novel DOCK3 interaction with SORBS1 through the C-terminal domain of DOCK3 that may account for its metabolic dysregulation. Together, these findings demonstrate an essential role for DOCK3 in skeletal muscle independent of DOCK3 function in neuronal lineages.


Assuntos
Metabolismo dos Carboidratos , Distrofia Muscular de Duchenne , Humanos , Adulto , Animais , Camundongos , Músculo Esquelético , Encéfalo , Camundongos Knockout , Glucose , Proteínas do Tecido Nervoso , Fatores de Troca do Nucleotídeo Guanina/genética
2.
Elife ; 122023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432316

RESUMO

Ubiquitin-proteasome system (UPS) dysfunction is associated with the pathology of a wide range of human diseases, including myopathies and muscular atrophy. However, the mechanistic understanding of specific components of the regulation of protein turnover during development and disease progression in skeletal muscle is unclear. Mutations in KLHL40, an E3 ubiquitin ligase cullin3 (CUL3) substrate-specific adapter protein, result in severe congenital nemaline myopathy, but the events that initiate the pathology and the mechanism through which it becomes pervasive remain poorly understood. To characterize the KLHL40-regulated ubiquitin-modified proteome during skeletal muscle development and disease onset, we used global, quantitative mass spectrometry-based ubiquitylome and global proteome analyses of klhl40a mutant zebrafish during disease progression. Global proteomics during skeletal muscle development revealed extensive remodeling of functional modules linked with sarcomere formation, energy, biosynthetic metabolic processes, and vesicle trafficking. Combined analysis of klh40 mutant muscle proteome and ubiquitylome identified thin filament proteins, metabolic enzymes, and ER-Golgi vesicle trafficking pathway proteins regulated by ubiquitylation during muscle development. Our studies identified a role for KLHL40 as a regulator of ER-Golgi anterograde trafficking through ubiquitin-mediated protein degradation of secretion-associated Ras-related GTPase1a (Sar1a). In KLHL40-deficient muscle, defects in ER exit site vesicle formation and downstream transport of extracellular cargo proteins result in structural and functional abnormalities. Our work reveals that the muscle proteome is dynamically fine-tuned by ubiquitylation to regulate skeletal muscle development and uncovers new disease mechanisms for therapeutic development in patients.


Assuntos
Proteínas Musculares , Peixe-Zebra , Animais , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Peixe-Zebra/metabolismo , Proteoma/metabolismo , Músculo Esquelético/metabolismo , Ubiquitinação , Sarcômeros/metabolismo , Ubiquitina/metabolismo , Retículo Endoplasmático/metabolismo , Desenvolvimento Muscular , Progressão da Doença
3.
Expert Opin Drug Discov ; 18(6): 629-641, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183669

RESUMO

INTRODUCTION: Zebrafish larvae are one of the few vertebrates amenable to large-scale drug discovery screens. Larval swimming behavior is often used as an outcome variable and many fields of study have developed assays for evaluating swimming performance. An unintended consequence of this wide interest is that details related to assay methodology and interpretation become scattered across the literature. The aim of this review is to consolidate this information, particularly as it relates to high-throughput approaches. AREAS COVERED: The authors describe larval swimming behaviors as this forms the basis for understanding their experimentally evoked swimming or spontaneous activity. Next, they detail how swimming activity can serve as an outcome variable, particularly in the multi-well formats used in large-scale screening studies. They also highlight biological and technical factors that can impact the sensitivity and variability of these measurements. EXPERT OPINION: Careful attention to animal husbandry, experimental design, data acquisition, and interpretation of results can improve screen outcomes by maximizing swimming activity while minimizing intra- and inter-larval variability. The development of more sensitive, quantitative methods of assessing swimming performance that can be incorporated into high-throughput workflows will be important in order to take full advantage of the zebrafish model.


Assuntos
Natação , Peixe-Zebra , Animais , Natação/fisiologia , Peixe-Zebra/fisiologia , Larva/fisiologia , Descoberta de Drogas
4.
Sci Rep ; 13(1): 7191, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37137956

RESUMO

Age-related deficits in skeletal muscle function, termed sarcopenia, are due to loss of muscle mass and changes in the intrinsic mechanisms underlying contraction. Sarcopenia is associated with falls, functional decline, and mortality. Electrical impedance myography (EIM)-a minimally invasive, rapid electrophysiological tool-can be applied to animals and humans to monitor muscle health, thereby serving as a biomarker in both preclinical and clinical studies. EIM has been successfully employed in several species; however, the application of EIM to the assessment of zebrafish-a model organism amenable to high-throughput experimentation-has not been reported. Here, we demonstrated differences in EIM measures between the skeletal muscles of young (6 months of age) and aged (33 months of age) zebrafish. For example, EIM phase angle and reactance at 2 kHz showed significantly decreased phase angle (5.3 ± 2.1 versus 10.7 ± 1.5°; p = 0.001) and reactance (89.0 ± 3.9 versus 172.2 ± 54.8 ohms; p = 0.007) in aged versus young animals. Total muscle area, in addition to other morphometric features, was also strongly correlated to EIM 2 kHz phase angle across both groups (r = 0.7133, p = 0.01). Moreover, there was a strong correlation between 2 kHz phase angle and established metrics of zebrafish swimming performance, including turn angle, angular velocity, and lateral motion (r = 0.7253, r = 0.7308, r = 0.7857, respectively, p < 0.01 for all). In addition, the technique was shown to have high reproducibility between repeated measurements with a mean percentage difference of 5.34 ± 1.17% for phase angle. These relationships were also confirmed in a separate replication cohort. Together, these findings establish EIM as a fast, sensitive method for quantifying zebrafish muscle function and quality. Moreover, identifying the abnormalities in the bioelectrical properties of sarcopenic zebrafish provides new opportunities to evaluate potential therapeutics for age-related neuromuscular disorders and to interrogate the disease mechanisms of muscle degeneration.


Assuntos
Sarcopenia , Peixe-Zebra , Humanos , Animais , Impedância Elétrica , Reprodutibilidade dos Testes , Miografia/métodos , Músculo Esquelético/fisiologia , Atrofia
5.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36865261

RESUMO

DOCK (dedicator of cytokinesis) is an 11-member family of typical guanine nucleotide exchange factors (GEFs) expressed in the brain, spinal cord, and skeletal muscle. Several DOCK proteins have been implicated in maintaining several myogenic processes such as fusion. We previously identified DOCK3 as being strongly upregulated in Duchenne muscular dystrophy (DMD), specifically in the skeletal muscles of DMD patients and dystrophic mice. Dock3 ubiquitous KO mice on the dystrophin-deficient background exacerbated skeletal muscle and cardiac phenotypes. We generated Dock3 conditional skeletal muscle knockout mice (Dock3 mKO) to characterize the role of DOCK3 protein exclusively in the adult muscle lineage. Dock3 mKO mice presented with significant hyperglycemia and increased fat mass, indicating a metabolic role in the maintenance of skeletal muscle health. Dock3 mKO mice had impaired muscle architecture, reduced locomotor activity, impaired myofiber regeneration, and metabolic dysfunction. We identified a novel DOCK3 interaction with SORBS1 through the C-terminal domain of DOCK3 that may account for its metabolic dysregulation. Together, these findings demonstrate an essential role for DOCK3 in skeletal muscle independent of DOCK3 function in neuronal lineages.

6.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763354

RESUMO

Striated preferentially expressed protein kinase (SPEG), a myosin light chain kinase, is mutated in centronuclear myopathy (CNM) and/or dilated cardiomyopathy. No precise therapies are available for this disorder, and gene replacement therapy is not a feasible option due to the large size of SPEG. We evaluated the potential of dynamin-2 (DNM2) reduction as a potential therapeutic strategy because it has been shown to revert muscle phenotypes in mouse models of CNM caused by MTM1, DNM2, and BIN1 mutations. We determined that SPEG-ß interacted with DNM2, and SPEG deficiency caused an increase in DNM2 levels. The DNM2 reduction strategy in Speg-KO mice was associated with an increase in life span, body weight, and motor performance. Additionally, it normalized the distribution of triadic proteins, triad ultrastructure, and triad number and restored phosphatidylinositol-3-phosphate levels in SPEG-deficient skeletal muscles. Although DNM2 reduction rescued the myopathy phenotype, it did not improve cardiac dysfunction, indicating a differential tissue-specific function. Combining DNM2 reduction with other strategies may be needed to target both the cardiac and skeletal defects associated with SPEG deficiency. DNM2 reduction should be explored as a therapeutic strategy against other genetic myopathies (and dystrophies) associated with a high level of DNM2.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Animais , Modelos Animais de Doenças , Dinamina II/genética , Camundongos , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/terapia , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fenótipo
7.
Life Sci Alliance ; 5(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35512829

RESUMO

miR-486 is a muscle-enriched microRNA, or "myomiR," that has reduced expression correlated with Duchenne muscular dystrophy (DMD). To determine the function of miR-486 in normal and dystrophin-deficient muscles and elucidate miR-486 target transcripts in skeletal muscle, we characterized mir-486 knockout mice (mir-486 KO). mir-486 KO mice developed disrupted myofiber architecture, decreased myofiber size, decreased locomotor activity, increased cardiac fibrosis, and metabolic defects were exacerbated in mir-486 KO:mdx 5cv (DKO) mice. To identify direct in vivo miR-486 muscle target transcripts, we integrated RNA sequencing and chimeric miRNA eCLIP sequencing to identify key transcripts and pathways that contribute towards mir-486 KO and dystrophic disease pathologies. These targets included known and novel muscle metabolic and dystrophic structural remodeling factors of muscle and skeletal muscle contractile transcript targets. Together, our studies identify miR-486 as essential for normal muscle function, a driver of pathological remodeling in dystrophin-deficient muscle, a useful biomarker for dystrophic disease progression, and highlight the use of multiple omic platforms to identify in vivo microRNA target transcripts.


Assuntos
Distrofina , MicroRNAs , Animais , Distrofina/genética , Camundongos , Camundongos Endogâmicos mdx , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Transcriptoma/genética
8.
Cell ; 184(19): 4919-4938.e22, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34506722

RESUMO

Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.


Assuntos
Capsídeo/metabolismo , Dependovirus/metabolismo , Evolução Molecular Direcionada , Técnicas de Transferência de Genes , Músculo Esquelético/metabolismo , Sequência de Aminoácidos , Animais , Capsídeo/química , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Integrinas/metabolismo , Macaca fascicularis , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/terapia , Multimerização Proteica , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/uso terapêutico , RNA Guia de Cinetoplastídeos/metabolismo , Recombinação Genética/genética , Especificidade da Espécie , Transgenes
9.
Mol Ther ; 29(3): 1086-1101, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33221436

RESUMO

Duchenne muscular dystrophy (DMD) is a severe genetic disorder caused by mutations in the DMD gene. Absence of dystrophin protein leads to progressive degradation of skeletal and cardiac function and leads to premature death. Over the years, zebrafish have been increasingly used for studying DMD and are a powerful tool for drug discovery and therapeutic development. In our study, a birefringence screening assay led to identification of phosphodiesterase 10A (PDE10A) inhibitors that reduced the manifestation of dystrophic muscle phenotype in dystrophin-deficient sapje-like zebrafish larvae. PDE10A has been validated as a therapeutic target by pde10a morpholino-mediated reduction in muscle pathology and improvement in locomotion, muscle, and vascular function as well as long-term survival in sapje-like larvae. PDE10A inhibition in zebrafish and DMD patient-derived myoblasts were also associated with reduction of PITPNA expression that has been previously identified as a protective genetic modifier in two exceptional dystrophin-deficient golden retriever muscular dystrophy (GRMD) dogs that escaped the dystrophic phenotype. The combination of a phenotypic assay and relevant functional assessments in the sapje-like zebrafish enhances the potential for the prospective discovery of DMD therapeutics. Indeed, our results suggest a new application for a PDE10A inhibitor as a potential DMD therapeutic to be investigated in a mouse model of DMD.


Assuntos
Distrofina/metabolismo , Distrofia Muscular Animal/prevenção & controle , Distrofia Muscular de Duchenne/prevenção & controle , Mioblastos/efeitos dos fármacos , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores , Diester Fosfórico Hidrolases/química , Pirazóis/farmacologia , Quinolinas/farmacologia , Animais , Cães , Distrofina/genética , Humanos , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mioblastos/metabolismo , Mioblastos/patologia , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Peixe-Zebra
10.
Skelet Muscle ; 10(1): 34, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33243288

RESUMO

BACKGROUND: Tetraspanins are a family of proteins known to assemble protein complexes at the cell membrane. They are thought to play diverse cellular functions in tissues by modifying protein-binding partners, thus bringing complexity and diversity in their regulatory networks. Previously, we identified the tetraspanin KAI/CD82 as a prospective marker for human muscle stem cells. CD82 expression appeared decreased in human Duchenne muscular dystrophy (DMD) muscle, suggesting a functional link to muscular dystrophy, yet whether this decrease is a consequence of dystrophic pathology or a compensatory mechanism in an attempt to rescue muscle from degeneration is currently unknown. METHODS: We studied the consequences of loss of CD82 expression in normal and dystrophic skeletal muscle and examined the dysregulation of downstream functions in mice aged up to 1 year. RESULTS: Expression of CD82 is important to sustain satellite cell activation, as in its absence there is decreased cell proliferation and less efficient repair of injured muscle. Loss of CD82 in dystrophic muscle leads to a worsened phenotype compared to control dystrophic mice, with decreased pulmonary function, myofiber size, and muscle strength. Mechanistically, decreased myofiber size in CD82-/- dystrophic mice is not due to altered PTEN/AKT signaling, although increased phosphorylation of mTOR at Ser2448 was observed. CONCLUSION: Basal CD82 expression is important to dystrophic muscle, as its loss leads to significantly weakened myofibers and impaired muscle function, accompanied by decreased satellite cell activity that is unable to protect and repair myofiber damage.


Assuntos
Proteína Kangai-1/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Feminino , Proteína Kangai-1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular , Distrofia Muscular de Duchenne/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
11.
Mol Ther ; 28(1): 189-201, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31628052

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked muscle wasting disease that is caused by the loss of functional dystrophin protein in cardiac and skeletal muscles. DMD patient muscles become weakened, leading to eventual myofiber breakdown and replacement with fibrotic and adipose tissues. Inflammation drives the pathogenic processes through releasing inflammatory cytokines and other factors that promote skeletal muscle degeneration and contributing to the loss of motor function. Selective inhibitors of nuclear export (SINEs) are a class of compounds that function by inhibiting the nuclear export protein exportin 1 (XPO1). The XPO1 protein is an important regulator of key inflammatory and neurological factors that drive inflammation and neurotoxicity in various neurological and neuromuscular diseases. Here, we demonstrate that SINE compound KPT-350 can ameliorate dystrophic-associated pathologies in the muscles of DMD models of zebrafish and mice. Thus, SINE compounds are a promising novel strategy for blocking dystrophic symptoms and could be used in combinatorial treatments for DMD.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Carioferinas/antagonistas & inibidores , Distrofia Muscular de Duchenne/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Peixe-Zebra/genética , Administração Oral , Animais , Biomarcadores/sangue , Citocinas/antagonistas & inibidores , Citocinas/sangue , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos DBA , Camundongos Endogâmicos mdx , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Proteínas de Peixe-Zebra/genética , Proteína Exportina 1
12.
Eur J Appl Physiol ; 119(10): 2339-2348, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31468173

RESUMO

PURPOSE: Changes in stiffness or extensibility of the muscle or muscle-tendon unit with aging could lead to impaired function and an increased vulnerability to injury. We aimed to investigate the passive force and viscoelastic properties of single muscle fibers in older adults. METHODS: Seven older adults (mean age 79.0 ± 3.8 years) and 10 young control (mean age 25.6 ± 4.5 years) were recruited. Biopsy specimens were obtained percutaneously from m. vastus lateralis and skinned single fibers were used for the experiments. Slack tests were performed to determine maximal force and maximal unloaded shortening velocity. Passive force was measured in pCa 9.0 solution using a stepwise stretch technique with increment of sarcomere length from 2.4 to 4.2 µm. Myosin heavy chain (MHC) isoform was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Specific force was calculated as maximal force divided by cross-sectional area. Passive force, peak passive force, time to half stress relaxation (T1/2) and force decay index (a force time integral under a stress relaxation curve) were measured. RESULTS: No difference between the groups were found in specific force and shortening velocity. Passive force and peak passive force were greater in both MHC I and IIa fibers of older adults (p < 0.001, p = 0.012, respectively, at 4.2 mm SL). Force decay index was higher in older adults. (p = 0.001 at 4.2 µm SL). There were no significant differences in passive force and viscoelastic properties between fiber types. CONCLUSION: We demonstrated greater passive force and viscoelastic properties at the level of single fibers in older adults.


Assuntos
Envelhecimento/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Elasticidade , Feminino , Humanos , Masculino , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Relaxamento Muscular , Cadeias Pesadas de Miosina/metabolismo , Viscosidade
13.
J Neuromuscul Dis ; 6(3): 271-287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31282429

RESUMO

The recent availability and development of mutant and transgenic zebrafish strains that model human muscular dystrophies has created new research opportunities for therapeutic development. Not only do these models mimic many pathological aspects of human dystrophies, but their small size, large clutch sizes, rapid ex utero development, body transparency, and genetic tractability enable research approaches that would be inconceivable with mammalian model systems. Here we discuss the use of zebrafish models of muscular dystrophy to rapidly screen hundreds to thousands of bioactive compounds in order to identify novel therapeutic candidates that modulate pathologic phenotypes. We review the justification and rationale behind this unbiased approach, including how zebrafish screens have identified FDA-approved drugs that are candidates for treating Duchenne and limb girdle muscular dystrophies. Not only can these drugs be re-purposed for treating dystrophies in a fraction of the time and cost of new drug development, but their identification has revealed novel, unexpected directions for future therapy development. Phenotype-driven zebrafish drug screens are an important compliment to the more established mammalian, target-based approaches for rapidly developing and validating therapeutics for muscular dystrophies.


Assuntos
Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Distrofias Musculares/tratamento farmacológico , Distrofia Muscular Animal/tratamento farmacológico , Peixe-Zebra , Animais , Modelos Animais de Doenças , Fenótipo
14.
Mol Cell Biol ; 39(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692269

RESUMO

Insulin-like growth factor 2 (IGF2) mRNA binding protein 2 (IMP2) was selectively deleted from adult mouse muscle; two phenotypes were observed: decreased accrual of skeletal muscle mass after weaning and reduced wheel-running activity but normal forced treadmill performance. Reduced wheel running occurs when mice are fed a high-fat diet but is normalized when mice consume standard chow. The two phenotypes are due to altered output from different IMP2 client mRNAs. The reduced fiber size of IMP2-deficient muscle is attributable, in part, to diminished autocrine Igf2 production; basal tyrosine phosphorylation of the insulin and IGF1 receptors is diminished, and Akt1 activation is selectively reduced. Gsk3α is disinhibited, and S536-phosphorylated ε subunit of eukaryotic initiation factor 2B [eIF2Bε(S536)] is hyperphosphorylated. Protein synthesis is reduced despite unaltered mTOR complex 1 activity. The diet-dependent reduction in voluntary exercise is likely due to altered muscle metabolism, as contractile function is normal. IMP2-deficient muscle exhibits reduced fatty acid oxidation, due to a reduced abundance of mRNA of peroxisome proliferator-activated receptor α (PPARα), an IMP2 client, and PPARα protein. IMP2-deficient muscle fibers treated with a mitochondrial uncoupler to increase electron flux, as occurs with exercise, exhibit reduced oxygen consumption from fatty acids, with higher oxygen consumption from glucose. The greater dependence on muscle glucose metabolism during increased oxygen demand may promote central fatigue and thereby diminish voluntary activity.


Assuntos
Atividade Motora/fisiologia , Músculo Esquelético/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Comunicação Autócrina , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , PPAR alfa/metabolismo , Fosforilação , Esforço Físico/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
15.
Hum Mol Genet ; 28(2): 320-331, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30307508

RESUMO

Facioscapulohumeral dystrophy type 1 (FSHD-1) is the most common autosomal dominant form of muscular dystrophy with a prevalence of ∼1 in 8000 individuals. It is considered a late-onset form of muscular dystrophy and leads to asymmetric muscle weakness in the facial, scapular, trunk and lower extremities. The prevalent hypothesis on disease pathogenesis is explained by misexpression of a germ line, primate-specific transcription factor DUX4-fl (double homeobox 4, full-length isoform) linked to the chromosome 4q35. In vitro and in vivo studies have demonstrated that very low levels of DUX4-fl expression are sufficient to induce an apoptotic and/or lethal phenotype, and therefore modeling of the disease has proved challenging. In this study, we expand upon our previously established injection model of DUX4 misexpression in zebrafish and describe a DUX4-inducible transgenic zebrafish model that better recapitulates the expression pattern and late onset phenotype characteristic of FSHD patients. We show that an induced burst of DUX4 expression during early development results in the onset of FSHD-like phenotypes in adulthood, even when DUX4 is no longer detectable. We also utilize our injection model to study long-term consequences of DUX4 expression in those that fail to show a developmental phenotype. Herein, we introduce a hypothesis that DUX4 expression during developmental stages is sufficient to induce FSHD-like phenotypes in later adulthood. Our findings point to a developmental role of DUX4 misexpression in the pathogenesis of FSHD and should be factored into the design of future therapies.


Assuntos
Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Contração Muscular , Músculo Esquelético/embriologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal , Distrofia Muscular Facioescapuloumeral/embriologia , Distrofia Muscular Facioescapuloumeral/etiologia , Distrofia Muscular Facioescapuloumeral/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
16.
JCI Insight ; 3(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30232282

RESUMO

Zebrafish are a powerful tool for studying muscle function owing to their high numbers of offspring, low maintenance costs, evolutionarily conserved muscle functions, and the ability to rapidly take up small molecular compounds during early larval stages. Fukutin-related protein (FKRP) is a putative protein glycosyltransferase that functions in the Golgi apparatus to modify sugar chain molecules of newly translated proteins. Patients with mutations in the FKRP gene can have a wide spectrum of clinical symptoms with varying muscle, eye, and brain pathologies depending on the location of the mutation in the FKRP protein. Patients with a common L276I FKRP mutation have mild adult-onset muscle degeneration known as limb-girdle muscular dystrophy 2I (LGMD2I), whereas patients with more C-terminal pathogenic mutations develop the severe Walker-Warburg syndrome (WWS)/muscle-eye-brain (MEB) disease. We generated fkrp-mutant zebrafish that phenocopy WWS/MEB pathologies including severe muscle breakdowns, head malformations, and early lethality. We have also generated a milder LGMD2I-model zebrafish via overexpression of a heat shock-inducible human FKRP (L276I) transgene that shows milder muscle pathology. Screening of an FDA-approved drug compound library in the LGMD2I zebrafish revealed a strong propensity towards steroids, antibacterials, and calcium regulators in ameliorating FKRP-dependent pathologies. Together, these studies demonstrate the utility of the zebrafish to both study human-specific FKRP mutations and perform compound library screenings for corrective drug compounds to treat muscular dystrophies.


Assuntos
Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Distrofia Muscular do Cíngulo dos Membros/tratamento farmacológico , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Distrofias Musculares/tratamento farmacológico , Distrofias Musculares/fisiopatologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Técnicas de Inativação de Genes , Humanos , Locomoção , Movimento , Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Pentosiltransferases , Fenótipo , Proteínas , Transcriptoma , Síndrome de Walker-Warburg , Peixe-Zebra
17.
PLoS One ; 13(6): e0199712, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29944715

RESUMO

Zebrafish are a preferred vertebrate model for delineating genotype-phenotype relationships. One of the most studied features of zebrafish is their exceptional swimming ability. By 7 days postfertilization (dpf), zebrafish spend over two-thirds of their time engaged in spontaneous swimming activity and several months later they are capable of attaining some of the fastest swimming velocities relative to body length ever recorded in the laboratory. However, laboratory-assembled flumes capable of achieving the slow flow velocities characteristics of larvae as well as the relatively fast maximal velocities of adults have not been described in sufficient detail to allow easy replication. Here we describe an easily assembled, open-source zebrafish-scaled flume for assessing swimming performance. The flume uses two independent spherical-impeller pumps modulated by a microcontroller to achieve flow velocities ranging from 1 to 70 cm s-1. The microcontroller also monitors water temperature and flow velocity and sends these data to a personal computer for real-time display and storage. Incremental protocols for assessing maximal swimming speed (Umax) were developed, stored in custom software, and then uploaded to the microcontroller in order to assess performance of larval (14, 21, 28 dpf), juvenile (35, 42 dpf), and adult (8, 22 month) zebrafish. The flume had sufficient range and sensitivity to detect developmental changes in Umax of larvae and juveniles, an 18-24% faster Umax of adult males vs. females, and a 14-20% age-related reduction in Umax for the oldest zebrafish. Detailed information is provided to assemble and operate this low-cost, versatile, and reliable tool for assessing zebrafish swimming performance.


Assuntos
Modelos Biológicos , Software , Natação/fisiologia , Peixe-Zebra/fisiologia , Animais
18.
PLoS Genet ; 14(3): e1007226, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29518074

RESUMO

Gene expression in a tissue-specific context depends on the combined efforts of epigenetic, transcriptional and post-transcriptional processes that lead to the production of specific proteins that are important determinants of cellular identity. Ribosomes are a central component of the protein biosynthesis machinery in cells; however, their regulatory roles in the translational control of gene expression in skeletal muscle remain to be defined. In a genetic screen to identify critical regulators of myogenesis, we identified a DEAD-Box RNA helicase, DDX27, that is required for skeletal muscle growth and regeneration. We demonstrate that DDX27 regulates ribosomal RNA (rRNA) maturation, and thereby the ribosome biogenesis and the translation of specific transcripts during myogenesis. These findings provide insight into the translational regulation of gene expression in myogenesis and suggest novel functions for ribosomes in regulating gene expression in skeletal muscles.


Assuntos
RNA Helicases DEAD-box/metabolismo , Músculo Esquelético/fisiologia , Biossíntese de Proteínas , RNA Ribossômico/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , Embrião não Mamífero , Camundongos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/citologia , Mioblastos/fisiologia , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , RNA Ribossômico/genética , Regeneração/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Hum Mol Genet ; 27(9): 1608-1617, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29474540

RESUMO

Centronuclear myopathies (CNM) are a subtype of congenital myopathies (CM) characterized by skeletal muscle weakness and an increase in the number of central myonuclei. We have previously identified three CNM probands, two with associated dilated cardiomyopathy, carrying striated preferentially expressed gene (SPEG) mutations. Currently, the role of SPEG in skeletal muscle function is unclear as constitutive SPEG-deficient mice developed severe dilated cardiomyopathy and died in utero. We have generated a conditional Speg-KO mouse model and excised Speg by crosses with striated muscle-specific cre-expressing mice (MCK-Cre). The resulting litters had a delay in Speg excision consistent with cre expression starting in early postnatal life and, therefore, an extended lifespan up to a few months. KO mice were significantly smaller and weaker than their littermate-matched controls. Histopathological skeletal muscle analysis revealed smaller myofibers, marked fiber-size variability, and poor integrity and low number of triads. Further, SPEG-deficient muscle fibers were weaker by physiological and in vitro studies and exhibited abnormal Ca2+ handling and excitation-contraction (E-C) coupling. Overall, SPEG deficiency in skeletal muscle is associated with fewer and abnormal triads, and defective calcium handling and excitation-contraction coupling, suggesting that therapies targeting calcium signaling may be beneficial in such patients.


Assuntos
Cálcio/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Quinase de Cadeia Leve de Miosina/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Feminino , Camundongos , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/deficiência , Quinase de Cadeia Leve de Miosina/genética
20.
Physiol Genomics ; 48(11): 850-860, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27764767

RESUMO

Sapje zebrafish lack the protein dystrophin and are the smallest vertebrate model of Duchenne muscular dystrophy (DMD). Their small size makes them ideal for large-scale drug discovery screens. However, the extent that sapje mimic the muscle dysfunction of higher vertebrate models of DMD is unclear. We used an optical birefringence assay to differentiate affected dystrophic sapje larvae from their unaffected siblings and then studied trunk muscle contractility at 4-7 days postfertilization. Preparation cross-sectional area (CSA) was similar for affected and unaffected larvae, yet tetanic forces of affected preparations were only 30-60% of normal. ANCOVA indicated that the linear relationship observed between tetanic force and CSA for unaffected preparations was absent in the affected population. Consequently, the average force/CSA of affected larvae was depressed 30-70%. Disproportionate reductions in twitch vs. tetanic force, and a slowing of twitch tension development and relaxation, indicated that the myofibrillar disorganization evident in the birefringence assay could not explain the entire force loss. Single eccentric contractions, in which activated preparations were lengthened 5-10%, resulted in tetanic force deficits in both groups of larvae. However, deficits of affected preparations were three- to fivefold greater at all strains and ages, even after accounting for any recovery. Based on these functional assessments, we conclude that the sapje mutant zebrafish is a phenotypically severe model of DMD. The severe contractile deficits of sapje larvae represent novel physiological endpoints for therapeutic drug screening.


Assuntos
Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Peixe-Zebra/fisiologia , Animais , Modelos Animais de Doenças , Cinética , Contração Muscular , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Análise de Regressão , Sarcômeros/metabolismo , Tetania/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA