Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958231

RESUMO

We analyzed the accuracy and time efficiency of the FilmArray blood culture identification (FA-BCID) panel in identifying the pathogens in positive blood cultures. Two-hundred and seventy-two individuals were randomly assigned as the control (n = 212) and FA-BCID (n = 60) groups participating in this study. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to assess the control group. Meanwhile, the FA-BCID group was evaluated using both FA-BCID and MALDI-TOF, and the results were compared. The identification results from 73% (44/60) of the blood samples demonstrated agreement between FA-BCID and MALDI-TOF. The FA-BCID panel detected mecA genes in seven Staphylococcus species; six cases were confirmed using antimicrobial susceptibility testing. In addition, KPC genes were detected in one Escherichia coli and one Klebsiella pneumoniae, although only the latter corresponded with the result from antimicrobial susceptibility testing. The turnaround time (TAT) for identification through FA-BCID was shorter, with a median of 3.6 [2.4-4.6] hours (p < 0.05). No significant differences in the clinical and microbial outcomes following the ASP were observed between FA-BCID and MALDI-TOF. These results suggest that the FA-BCID panel provides an identification result that is as reliable as that provided by the routine identification procedure but with shorter TAT; thus, the FA-BCID method is considered an effective and beneficial method for therapeutic decision making and the improvement of the ASP for patients with bloodstream infection.

2.
BMC Infect Dis ; 23(1): 732, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891503

RESUMO

OBJECTIVE: We aimed to compare the adaptive immune response in individuals with or without prior SARS-CoV-2 infections following the administration of mRNA-based COVID-19 vaccines. METHODS: A total of 54 participants with ages ranging from 37 to 56 years old, consisting of 23 individuals without a history of SARS-CoV-2 infection (uninfected group) and 31 individuals with prior infection of SARS-CoV-2 (infected group) who have received two doses of mRNA SARS-CoV-2 vaccines were enrolled in this study. We measured the IFN-γ level upon administration of BNT162b2 (PF) or mRNA-1273 (MO) by QuantiFERON SARS-CoV-2. The production of neutralizing antibodies was evaluated by a surrogate virus neutralization assay, and the neutralizing capacity was assessed by a plaque reduction neutralization test (PRNT50). The immune response was compared between the two groups. RESULTS: A significantly higher level of IFN-γ (p < 0.001) and neutralization antibodies (p < 0.001) were observed in the infected group than those in the uninfected group following the first administration of vaccines. The infected group demonstrated a significantly higher PRNT50 titer than the uninfected group against the Wuhan strain (p < 0.0001). Still, the two groups were not significantly different against Delta (p = 0.07) and Omicron (p = 0.14) variants. Following the second vaccine dose, T- and B-cell levels were not significantly increased in the infected group. CONCLUSION: A single dose of mRNA-based COVID-19 vaccines would boost immune responses in individuals who had previously contracted SARS-CoV-2.


Assuntos
COVID-19 , Humanos , Adulto , Pessoa de Meia-Idade , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , Vacinação , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Virus Res ; 336: 199205, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37607595

RESUMO

To gain a deeper understanding of the molecular mechanisms involved in viral infection and the corresponding plant resistance responses, it is essential to investigate the interactions between viral and host proteins. In the case of viral infections in plants, a significant portion of the affected gene products are closely associated with chloroplasts and photosynthesis. However, the molecular mechanisms underlying the interplay between the virus and host chloroplast proteins during replication remain poorly understood. In our previous study, we made an interesting discovery regarding soybean mosaic virus (SMV) infection in resistant and susceptible soybean cultivars. We found that the photosystem I (PSI) subunit (PSaC) and ATP synthase subunit α (ATPsyn-α) genes were up-regulated in the resistant cultivar following SMV-G7H and SMV-G5H infections compared to the susceptible cultivar. Overexpression of these two genes within the SMV-G7H genome in the susceptible cultivar Lee74 (rsv3-null) reduced SMV accumulation, whereas silencing of the PSaC and ATPsyn-α genes promoted SMV accumulation. We have also found that the PSaC and ATPsyn-α proteins are present in the chloroplast envelope, nucleus, and cytoplasm. Building on these findings, we now characterized protein-protein interactions between PSaC and ATPsyn-α with two viral proteins, NIb and NIa-Pro, respectively, of SMV. Through co-immunoprecipitation (Co-IP) experiments, we confirmed the interactions between these proteins. Moreover, when the C-terminal region of either PSaC or ATPsyn-α was overexpressed in the SMV-G7H genome, we observed a reduction in viral accumulation and systemic infection in the susceptible cultivar. Based on these results, we propose that the PSaC and ATPsyn-α genes play a modulatory role in conferring resistance to SMV infection by influencing the function of NIb and NIa-Pro-in SMV replication and movement. The identification of these photosynthesis-related genes as key players in the interplay between the virus and the host provides valuable insights for developing more targeted control strategies against SMV. Additionally, by utilizing these genes, it may be possible to genetically engineer plants with improved photosynthetic efficiency and enhanced resistance to SMV infection.


Assuntos
Vírus do Mosaico , Potyvirus , Glycine max , Proteínas de Cloroplastos , Potyvirus/genética , Vírus do Mosaico/genética , Doenças das Plantas
4.
PLoS One ; 18(8): e0289990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561721

RESUMO

Following the outbreak of Omicron and its subvariants, many of the currently available rapid Ag tests (RATs) showed a decrease in clinical performance. In this study, we evaluated the clinical sensitivity of the SARS-CoV-2 Rapid Antigen Test 2.0 for nasopharyngeal swabs and SARS-CoV-2 Rapid Antigen Test 2.0 Nasal for nasal swabs in 56 symptomatic individuals by comparing the results between RATs, RT-PCR, Omicron RT-PCR, and whole-genome sequencing (WGS). Furthermore, sequences of the Omicron subvariants' spike proteins were subjected to phylogenetic analysis. Both novel RATs demonstrated a high sensitivity of up to 92.86%, (95% CI 82.71%- 98.02%), 94.23%, (95% CI 83.07%- 98.49%), and 97.95% (95% CI 87.76%- 99.89%) compared to the RT-PCR, Omicron RT-PCR, and WGS, respectively. The clinical sensitivity of RATs was at its highest when the Ct value was restricted to 15≤Ct<25, with a sensitivity of 97.05% for RdRp genes. The Omicron RT-PCR analysis revealed subvariants BA.4 or BA.5 (76.8%) and BA.2.75 (16.1%). Subsequently, the WGS analysis identified BA.5 (65.5%) as the dominant subvariant. Phylogenetic analysis of the spike protein of Omicron's subvariants showed a close relationship between BA.4, BA.5, and BA.2.75. These results demonstrated that SARS-CoV-2 Rapid Antigen Test 2.0 and SARS-CoV-2 Rapid Antigen Test 2.0 Nasal are considered useful and efficient RATs for the detection of SARS-CoV-2, particularly during the current Omicron subvariants wave.


Assuntos
Antígenos de Grupos Sanguíneos , COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Filogenia , SARS-CoV-2/genética , Antígenos de Fungos , Surtos de Doenças , Antígenos O
5.
Viruses ; 15(8)2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37632098

RESUMO

In this study, we evaluated the effectiveness of the bivalent mRNA COVID-19 vaccines against the Omicron variant in individuals with or without prior SARS-CoV-2 infection history. We assessed the SARS-CoV-2-specific neutralizing antibody in serum samples by surrogate virus neutralizing assay (sVNT) and determined the serum's neutralizing capacity against the Omicron BA.5 by a plaque reduction neutralizing test (PRNT50). The results of the sVNT assay demonstrate a higher percentage of inhibition of the serum samples from the infected group than from the uninfected group (p = 0.01) before the bivalent vaccination but a similarly high percentage of inhibition after the vaccination. Furthermore, the results of the PRNT50 assay demonstrate a higher neutralizing capacity of the serum samples against Omicron BA.5 in the infected group compared to the uninfected group, both before and after the bivalent vaccine administration (p < 0.01 and p = 0.02 for samples collected before and after the bivalent vaccination, respectively). A higher neutralizing capacity of the serum samples against BA.5 following bivalent vaccination compared to those before vaccination suggests the efficacy of bivalent mRNA COVID-19 vaccines in triggering an immune response against the Omicron variant, particularly BA.5, regardless of infection history.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2/genética , Anticorpos Antivirais , RNA Mensageiro
6.
J Clin Lab Anal ; 37(6): e24882, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37032413

RESUMO

BACKGROUND: Interferon-gamma (IFN-γ) release assays (IGRAs) are useful for the assessment of the T-cell response to severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). We aimed to assess the performance of the newly developed IGRA ELISA test compared to the pre-existing assays and to validate the cutoff value in real-world conditions. METHODS: We enrolled 219 participants and assessed agreement between STANDARD-E Covi-FERON ELISA with Quanti-FERON SARS-CoV-2 (QFN SARS-CoV-2), as well as with T SPOT Discovery SARS-CoV-2 based on Cohen's kappa-index. We further determined the optimal cutoff value for the Covi-FERON ELISA according to the immune response to vaccinations or infections. RESULTS: We found a moderate agreement between Covi-FERON ELISA and QFN SARS-CoV-2 before vaccination (kappa-index = 0.71), whereas a weak agreement after the first (kappa-index = 0.40) and second vaccinations (kappa-index = 0.46). However, the analysis between Covi-FERON ELISA and T SPOT assay demonstrated a strong agreement (kappa-index >0.7). The cut-off value of the OS (original spike) marker was 0.759 IU/mL with a sensitivity of 96.3% and specificity of 78.7%, and that of the variant spike (VS) marker was 0.663 IU/mL with a sensitivity and specificity of 77.8% and 80.6%, respectively. CONCLUSION: The newly determined cut-off value may provide an optimum value to minimize and prevent the occurrence of false-negative or false-positive during the assessment of T-cell immune response using Covi-FERON ELISA under real-world conditions.


Assuntos
COVID-19 , Testes de Liberação de Interferon-gama , Humanos , Anticorpos Antivirais , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , SARS-CoV-2 , Linfócitos T
7.
Bioengineering (Basel) ; 10(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36978713

RESUMO

Rapid antigen tests (RATs) are diagnostic tools developed to specifically detect a certain protein of infectious agents (viruses, bacteria, or parasites). RATs are easily accessible due to their rapidity and simplicity. During the COVID-19 pandemic, RATs have been widely used in detecting the presence of the specific SARS-CoV-2 antigen in respiratory samples from suspected individuals. Here, the authors review the application of RATs as detection tools for COVID-19, particularly in Korea, as well as for several other infectious diseases. To address these issues, we present general knowledge on the design of RATs that adopt the lateral flow immunoassay for the detection of the analyte (antigen). The authors then discuss the clinical utilization of the authorized RATs amidst the battle against the COVID-19 pandemic in Korea and their role in comparison with other detection methods. We also discuss the implementation of RATs for other, non-COVID-19 infectious diseases, the challenges that may arise during the application, the limitations of RATs as clinical detection tools, as well as the possible problem solving for those challenges to maximize the performance of RATs and avoiding any misinterpretation of the test result.

8.
Antibodies (Basel) ; 12(1)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36648889

RESUMO

Monoclonal antibodies are a promising treatment for COVID-19. However, the emergence of SARS-CoV-2 variants raised concerns about these therapies' efficacy and long-term viability. Studies reported several antibodies, that received authorization for COVID-19 treatment, are not effective against new variants or subvariants of SARS-CoV-2, hence their distribution has to be paused. Here, the authors reviewed the status of the currently available monoclonal antibodies for COVID-19 treatment, their potential as a therapeutic agent, and the challenges ahead. To address these issues, the authors presented general information on SARS-CoV-2 and how monoclonal antibodies work against SARS-CoV-2. The authors then focus on the antibodies that have been deployed for COVID-19 treatment and their current status, as well as the evidence supporting their potential as an early intervention against COVID-19. Lastly, the authors discussed some leading obstacles that hinder the development and administration of monoclonal antibodies for the treatment of COVID-19.

9.
Mol Plant Pathol ; 24(2): 179-187, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36416097

RESUMO

Infection of viruses from the genera Bromovirus, Potyvirus, and Potexvirus in Nicotiana benthamiana induces significant up-regulation of the genes that encode the HSP70 family, including binding immunoglobulin protein 2 (BiP2). Three up-regulated genes were knocked down and infection assays with these knockdown lines demonstrated the importance of the BiP2 gene for potyvirus infection but not for infection by the other tested viruses. Distinct symptoms of cucumber mosaic virus (CMV) and potato virus X (PVX) were observed in the BiP2 knockdown line at 10 days postagroinfiltration. Interestingly, following inoculation with either soybean mosaic virus (SMV) or pepper mottle virus (PepMoV) co-expressing green fluorescent protein (GFP), neither crinkle symptoms nor GFP signals were observed in the BiP2 knockdown line. Subsequent reverse transcription-quantitative PCR analysis demonstrated that knockdown of BiP2 resulted in a significant decrease of SMV and PepMoV RNA accumulation but not PVX or CMV RNA accumulation. Further yeast two-hybrid and co-immunoprecipitation analyses validated the interaction between BiP2 and nuclear inclusion protein b (NIb) of SMV. Together, our findings suggest the crucial role of BiP2 as a proviral host factor necessary for potyvirus infection. The interaction between BiP2 and NIb may be the critical factor determining susceptibility in N. benthamiana, but further studies are needed to elucidate the underlying mechanism.


Assuntos
Infecções por Citomegalovirus , Potyvirus , Nicotiana , Provírus/genética , RNA/metabolismo , Potyvirus/genética , Doenças das Plantas
10.
J Microbiol Immunol Infect ; 55(6 Pt 1): 1013-1024, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36261313

RESUMO

BACKGROUND: The coronavirus disease (COVID-19) has been a worldwide concern since 2019. Vaccines are predicted to be crucial in preventing further outbreaks. The development and kinetics of immune responses determine the efficacy of COVID-19 vaccines. METHODS: We measured interferon-gamma (IFN-γ) levels upon administering homologous adenovirus vector-based (ChAdOx1-S [AZ], Ad26.COV2.S [JAN]), mRNA-based (BNT162b2 [PF]; mRNA-1273 [MO]), and heterologous (AZ/PF) vaccines in healthy Korean individuals using two IFN-γ release assays: the Covi-FERON ELISA and T-SPOT Discovery SARS-CoV-2 assay. B cell responses were evaluated by assessing the production of neutralizing antibodies by surrogate virus neutralization assay. The immune response among the vaccine groups was compared after adjusting the vaccination dose and interactions between each group. RESULTS: AZ triggered the highest T cell response after the first dose but showed instability after the second. PF and MO yielded stable and higher increments of T and B cell responses compared to AZ. MO yielded a higher immune response than PF. JAN yielded T and B cell responses at lower levels than the other vaccines. The booster dose triggered significant increases in the T and B cell responses and is therefore needed to protect against SARS-CoV-2 given the possibility of waning immune responses. CONCLUSION: Administering two doses of mRNA vaccines provides the most effective results among the administered vaccines in triggering the immune response specific to SARS-CoV-2 in healthy Korean individuals. Administration of booster doses demonstrated a significant increase in the immune response and may provide longer protection against SARS-CoV-2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Ad26COVS1 , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2 , Linfócitos T , Vacinação , Anticorpos Neutralizantes , República da Coreia , Anticorpos Antivirais
11.
J Clin Lab Anal ; 36(6): e24410, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35441745

RESUMO

BACKGROUND: Surveillance and control of SARS-CoV-2 outbreak through gold standard detection, that is, real-time polymerase chain reaction (RT-PCR), become a great obstacle, especially in overwhelming outbreaks. In this study, we aimed to analyze the performance of rapid antigen home test (RAHT) as an alternative detection method compared with RT-PCR. METHODS: In total, 79 COVID-19-positive and 217 COVID-19-negative patients confirmed by RT-PCR were enrolled in this study. A duration from symptom onset to COVID-19 confirmation of <5 days was considered a recruiting criterion for COVID-19-positive cases. A nasal cavity specimen was collected for the RAHT, and a nasopharyngeal swab specimen was collected for RT-PCR. RESULTS: Sensitivity of the STANDARD Q COVID-19 Ag Home Test (SD Biosensor, Korea), compared with RT-PCR, was 94.94% (75/79) (95% [confidence interval] CI, 87.54%-98.60%), and specificity was 100%. Sensitivity was significantly higher in symptomatic patients (98.00%) than in asymptomatic (89.66%) patients (p-value = 0.03). There was no difference in sensitivity according to the duration of symptom onset to confirmation (100% for 0-2 days and 96.97% for 3-5 days, respectively) (p-value = 1.00). The RAHT detected all 51 COVID-19 patients whose Ct values were ≤25 (100%), whereas sensitivity was 73.33% (11/15) among patients with Ct values >25 (p-value = 0.01). CONCLUSION: The RAHT showed an excellent sensitivity for COVID-19-confirmed cases, especially for those with symptoms. There was a decrease in sensitivity when the Ct value is over 25, indicating that RAHT screening may be useful during the early phase of symptom onset, when the viral numbers are higher and it is more transmissible.


Assuntos
COVID-19 , Antígenos Virais/análise , COVID-19/diagnóstico , Teste Sorológico para COVID-19 , Humanos , Programas de Rastreamento/métodos , SARS-CoV-2 , Sensibilidade e Especificidade
12.
Diagnostics (Basel) ; 12(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328263

RESUMO

The rapid diagnosis of SARS-CoV-2 is an essential aspect in the detection and control of the spread of COVID-19. We evaluated the accuracy of the rapid antigen test (RAT) using samples from the nasal cavity and nasopharynx based on sample collection timing and viral load. We enrolled 175 patients, of which 71 patients and 104 patients had tested positive and negative, respectively, based on real time-PCR. Nasal cavity and nasopharyngeal swab samples were tested using STANDARD Q COVID-19 Ag tests (Q Ag, SD Biosensor, Korea). The sensitivity of the Q Ag test was 77.5% (95% confidence interval [CI], 67.8−87.2%) for the nasal cavity and 81.7% (95% [CI, 72.7−90.7%) for the nasopharyngeal specimens. The RAT results showed a substantial agreement between the nasal cavity and nasopharyngeal specimens (Cohen's kappa index = 0.78). The sensitivity of the RAT for nasal cavity specimens exceeded 89% for <5 days after symptom onset (DSO) and 86% for Ct of E and RdRp < 25. The Q Ag test performed fairly well, especially in the early DSO when a high viral load was present, and the nasal cavity swab can be considered an alternative site for the rapid diagnosis of COVID-19.

13.
J Exp Bot ; 73(5): 1623-1642, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34758072

RESUMO

A purple acid phosphatase, GmPAP2.1, from the soybean (Glycine max) cultivar L29 may function as a resistance factor acting against specific strains of Soybean mosaic virus (SMV). In this study, we found that overexpression of GmPAP2.1 from L29 conferred SMV resistance to a susceptible cultivar, Lee 74. We determined that GmPAP2.1 interacted with the SMV protein P1 in the chloroplasts, resulting in the up-regulation of the ICS1 gene, which in turn promoted the pathogen-induced salicylic acid (SA) pathway. SA accumulation was elevated in response to the co-expression of GmPAP2.1 and SMV, while transient knockdown of endogenous SA-related genes resulted in systemic infection by SMV strain G5H, suggesting that GmPAP2.1-derived resistance depended on the SA-pathway for the activation of a defense response. Our findings thus suggest that GmPAP2.1 purple acid phosphatase of soybean cultivar L29 functions as an SA-pathway-dependent resistance factor acting against SMV.


Assuntos
Glycine max , Potyvirus , Fosfatase Ácida , Doenças das Plantas/genética , Glycine max/genética , Glycine max/metabolismo
14.
Diagnostics (Basel) ; 13(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36611324

RESUMO

We evaluated the performance of the STANDARD Q COVID/FLU Ag Combo test (Q Ag combo test) for the detection of SARS-CoV-2, influenza A, and influenza B using a single point-of-care device compared with real-time PCR. A total of 408 individuals, 55 positives with SARS-CoV-2, 90 with influenza A, 68 with influenza B, and 195 negatives for all viruses, participated. The Q Ag combo test demonstrated a high level of sensitivity of 92.73% and a specificity of 99.49% for the detection of SARS-CoV-2. When the number of days from symptom onset (DSO) was restricted to 0 < DSO ≤ 6, the sensitivity of the Q Ag combo test to detect SARS-CoV-2 was 100%, and when the Ct value of RdRp was ≤20, the sensitivity to detect SARS-CoV-2 was 93.10%. The Q Ag combo test results also demonstrated a sensitivity of 92.22% and a specificity of 100% for influenza A, a sensitivity of 91.18%, and a specificity of 99.49% for influenza B. The agreement analysis of the Q Ag combo test with the RT-PCR results demonstrated excellent outcomes, making it useful and efficient for the detection of SARS-CoV-2, influenza A, and influenza B.

15.
Plants (Basel) ; 9(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046350

RESUMO

Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development of resistance/disease in soybean plants. Depending on the interacting strain and cultivar, R-protein in resistant soybean perceives a specific SMV effector, which triggers either the extreme silent resistance or the typical resistance manifested by hypersensitive responses and induction of salicylic acid and reactive oxygen species. In this review, we consider the major advances that have been made in understanding the soybean-SMV arms race. We also focus on dissecting mechanisms SMV employs to establish infection and how soybean perceives and then responds to SMV attack. In addition, progress on soybean R-genes studies, as well as those addressing independent resistance genes, are also addressed.

16.
Viruses ; 11(9)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546878

RESUMO

In soybean cultivar L29, the Rsv3 gene is responsible for extreme resistance (ER) against the soybean mosaic virus avirulent strain G5H, but is ineffective against the virulent strain G7H. Part of this ER is attributed to the rapid increase in abscisic acid (ABA) and callose, and to the rapid induction of several genes in the RNA-silencing pathway. Whether these two defense mechanisms are correlated or separated in the ER is unknown. Here, we found that ABA treatment of L29 plants increased the expression of several antiviral RNA-silencing genes as well as the PP2C3a gene, which was previously shown to increase callose accumulation; as a consequence, ABA increased the resistance of L29 plants to G7H. The effect of ABA treatment on these genes was weaker in the rsv3-null cultivar (Somyungkong) than in L29. Besides, G5H-infection of Somyungkong plants subverted the effect of ABA leading to reduced callose accumulation and decreased expression of several RNA-silencing genes, which resulted in increased susceptibility to G5H infection. ABA treatment, however, still induced some resistance to G7H in Somyungkong, but only AGO7b was significantly induced. Our data suggest that Rsv3 modulates the effect of ABA on these two resistance mechanisms, i.e., callose accumulation and the antiviral RNA-silencing pathway, and that in the absence of Rsv3, some strains can reverse the effect of ABA and thereby facilitate their replication and spread.


Assuntos
Ácido Abscísico/metabolismo , Resistência à Doença/genética , Glycine max/química , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/fisiologia , Interações entre Hospedeiro e Microrganismos , Doenças das Plantas/genética , Interferência de RNA , Glycine max/virologia
17.
J Virol Methods ; 265: 26-34, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578897

RESUMO

Although infectious clones are fundamental tools in virology and plant pathology, their efficacy is often reduced by the instability of viral sequences in Escherichia coli. In this study, we constructed an infectious clone of PepMoV (pPepMoV) in a bacterial binary vector (pSNU1); the clone induces symptoms of PepMoV in agroinfiltrated plants. During its modification and maintenance in E. coli, however, the pPepMoV infectious clone was instable in the bacteria. Manipulation of this unstable clone in the bacterial strain DH10B led to the spontaneous formation of a recombined clone with high stability in the bacteria but with reduced infectivity due to an unwanted insertion of an E. coli sequence in the NIa-protease coding region. Replacement of this sequence with a plant intron restored infectivity and maintained plasmid stability. In addition to restoring plasmid growth in both E. coli and Agrobacterium, the presence of the intron in the PepMoV sequence enhanced the accumulation of PepMoV in agroinfiltrated leaves and resulted in symptom induction in upper systemic leaves that was nearly as strong as with PepMoV sap-inoculation. Plant introns have been previously used to stabilize plasmids in E. coli without any effect or with an unexpected lag in symptom development. In contrast, the current results demonstrated the in vivo enhancement of an infectious clone by a plant intron.


Assuntos
Íntrons , Nicotiana/virologia , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Agrobacterium/genética , Replicação do DNA , Escherichia coli/genética , Vetores Genéticos , Instabilidade Genômica , Folhas de Planta/virologia , Plasmídeos , Potyvirus/genética , Recombinação Genética
18.
Virology ; 513: 153-159, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080441

RESUMO

Soybean mosaic virus (SMV), a member of the genus Potyvirus, significantly reduces soybean production worldwide. Rsv3, which confers strain-specific resistance to SMV, was previously mapped between the markers A519F/R and M3Satt in chromosome 14 of the soybean [Glycine max (L.) Merr.] genotype L29. Analysis of the soybean genome database revealed that five different NBS-LRR sequences exist between the flanking markers. Among these candidate Rsv3 genes, the full-length cDNA of the Glyma.14g204700 was successfully cloned from L29. Over-expression of Glyma.14g204700 in leaves inoculated with SMV inhibited viral infection in a soybean genotype lacking Rsv3. In addition, the transient silencing of the candidate gene caused a high accumulation of an avirulent strain in L29 carrying Rsv3. Our results therefore provide additional line of evidence to support that Glyma.14g204700 is likely Rsv3 gene that confers strain-specific resistance to SMV.


Assuntos
Resistência à Doença , Genes de Plantas , Glycine max/genética , Glycine max/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Potyvirus/imunologia , Expressão Gênica , Inativação Gênica , Teste de Complementação Genética , Genótipo , Análise de Sequência de DNA , Glycine max/virologia
19.
Virology ; 510: 242-247, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28753465

RESUMO

Autonomous hypersensitive responses (self-HRs) are caused by constitutively active R proteins. In this study, we identified an auto-activated form of the R gene Pvr9 (autoPvr9); the auto-activation results from an amino acid substitution between its NBS and LRR domains. Self-HR was strongly reduced or completely inhibited by fusion of an extra peptide to the autoPvr9 N-terminal or C-terminal, respectively. When an NIa recognition site was placed between autoPvr9 and the extra peptide, the fusion construct could trigger an NIa-dependent HR. Several C-terminal fusions were tested, but only those that maintained detectable protein expression were capable of an NIa-dependent HR. Our results suggest the potential for transforming malfunctioning and auto-activated R proteins into a new construct targeting potyviral NIa proteases.


Assuntos
Resistência à Doença , Peptídeo Hidrolases/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/virologia , Potyvirus/imunologia , Potyvirus/patogenicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA