Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949060

RESUMO

Objective.Gradient-based optimization using algorithmic derivatives can be a useful technique to improve engineering designs with respect to a computer-implemented objective function. Likewise, uncertainty quantification through computer simulations can be carried out by means of derivatives of the computer simulation. However, the effectiveness of these techniques depends on how 'well-linearizable' the software is. In this study, we assess how promising derivative information of a typical proton computed tomography (pCT) scan computer simulation is for the aforementioned applications.Approach.This study is mainly based on numerical experiments, in which we repeatedly evaluate three representative computational steps with perturbed input values. We support our observations with a review of the algorithmic steps and arithmetic operations performed by the software, using debugging techniques.Main results.The model-based iterative reconstruction (MBIR) subprocedure (at the end of the software pipeline) and the Monte Carlo (MC) simulation (at the beginning) were piecewise differentiable. However, the observed high density and magnitude of jumps was likely to preclude most meaningful uses of the derivatives. Jumps in the MBIR function arose from the discrete computation of the set of voxels intersected by a proton path, and could be reduced in magnitude by a 'fuzzy voxels' approach. The investigated jumps in the MC function arose from local changes in the control flow that affected the amount of consumed random numbers. The tracking algorithm solves an inherently non-differentiable problem.Significance.Besides the technical challenges of merely applying AD to existing software projects, the MC and MBIR codes must be adapted to compute smoother functions. For the MBIR code, we presented one possible approach for this while for the MC code, this will be subject to further research. For the tracking subprocedure, further research on surrogate models is necessary.


Assuntos
Prótons , Tomografia Computadorizada por Raios X , Simulação por Computador , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Software , Algoritmos , Método de Monte Carlo
2.
Phys Med Biol ; 68(19)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37652034

RESUMO

Objective.Proton therapy is highly sensitive to range uncertainties due to the nature of the dose deposition of charged particles. To ensure treatment quality, range verification methods can be used to verify that the individual spots in a pencil beam scanning treatment fraction match the treatment plan. This study introduces a novel metric for proton therapy quality control based on uncertainties in range verification of individual spots.Approach.We employ uncertainty-aware deep neural networks to predict the Bragg peak depth in an anthropomorphic phantom based on secondary charged particle detection in a silicon pixel telescope designed for proton computed tomography. The subsequently predicted Bragg peak positions, along with their uncertainties, are compared to the treatment plan, rejecting spots which are predicted to be outside the 95% confidence interval. The such-produced spot rejection rate presents a metric for the quality of the treatment fraction.Main results.The introduced spot rejection rate metric is shown to be well-defined for range predictors with well-calibrated uncertainties. Using this method, treatment errors in the form of lateral shifts can be detected down to 1 mm after around 1400 treated spots with spot intensities of 1 × 107protons. The range verification model used in this metric predicts the Bragg peak depth to a mean absolute error of 1.107 ± 0.015 mm.Significance.Uncertainty-aware machine learning has potential applications in proton therapy quality control. This work presents the foundation for future developments in this area.


Assuntos
Terapia com Prótons , Incerteza , Prótons , Aprendizado de Máquina , Redes Neurais de Computação
3.
Artigo em Inglês | MEDLINE | ID: mdl-37015488

RESUMO

When learning a motor skill it is helpful to get corrective feedback from an instructor. This will support the learner to execute the movement correctly. With modern technology, it is possible to provide this feedback via mixed reality. In most cases, this involves visual cues to help the user understand the corrective feedback. We analyzed recent research approaches utilizing visual cues for feedback in mixed reality. The scope of this paper is visual feedback for motor skill learning, which involves physical therapy, exercise, rehabilitation etc. While some of the surveyed literature discusses therapeutic effects of the training, this paper focuses on visualization techniques. We categorized the literature from a visualization standpoint, including visual cues, technology and characteristics of the feedback. This provided insights into how visual feedback in mixed reality is applied in the literature and how different aspects of the feedback are related. The insights obtained can help to better adjust future feedback systems to the target group and their needs. This paper also provides a deeper understanding of the characteristics of the visual cues in general and promotes future, more detailed research on this topic.

4.
Acta Oncol ; 60(11): 1413-1418, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34259117

RESUMO

BACKGROUND: Proton computed tomography (pCT) and radiography (pRad) are proposed modalities for improved treatment plan accuracy and in situ treatment validation in proton therapy. The pCT system of the Bergen pCT collaboration is able to handle very high particle intensities by means of track reconstruction. However, incorrectly reconstructed and secondary tracks degrade the image quality. We have investigated whether a convolutional neural network (CNN)-based filter is able to improve the image quality. MATERIAL AND METHODS: The CNN was trained by simulation and reconstruction of tens of millions of proton and helium tracks. The CNN filter was then compared to simple energy loss threshold methods using the Area Under the Receiver Operating Characteristics curve (AUROC), and by comparing the image quality and Water Equivalent Path Length (WEPL) error of proton and helium radiographs filtered with the same methods. RESULTS: The CNN method led to a considerable improvement of the AUROC, from 74.3% to 97.5% with protons and from 94.2% to 99.5% with helium. The CNN filtering reduced the WEPL error in the helium radiograph from 1.03 mm to 0.93 mm while no improvement was seen in the CNN filtered pRads. CONCLUSION: The CNN improved the filtering of proton and helium tracks. Only in the helium radiograph did this lead to improved image quality.


Assuntos
Telescópios , Humanos , Processamento de Imagem Assistida por Computador , Método de Monte Carlo , Redes Neurais de Computação , Imagens de Fantasmas , Radiografia
5.
IEEE Trans Vis Comput Graph ; 25(8): 2514-2528, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29994478

RESUMO

We discuss the concept of directness in the context of spatial interaction with visualization. In particular, we propose a model that allows practitioners to analyze and describe the spatial directness of interaction techniques, ultimately to be able to better understand interaction issues that may affect usability. To reach these goals, we distinguish between different types of directness. Each type of directness depends on a particular mapping between different spaces, for which we consider the data space, the visualization space, the output space, the user space, the manipulation space, and the interaction space. In addition to the introduction of the model itself, we also show how to apply it to several real-world interaction scenarios in visualization, and thus discuss the resulting types of spatial directness, without recommending either more direct or more indirect interaction techniques. In particular, we will demonstrate descriptive and evaluative usage of the proposed model, and also briefly discuss its generative usage.

6.
Artigo em Inglês | MEDLINE | ID: mdl-23366798

RESUMO

The grading of inflammatory bowel disease (IBD) severity is important to determine the proper treatment strategy and to quantify the response to treatment. Traditionally, ileocolonoscopy is considered the reference standard for assessment of IBD. However, the procedure is invasive and requires extensive bowel preparation. Magnetic resonance imaging (MRI) has become an important tool for determining the presence of disease activity. Unfortunately, only moderate interobserver agreement is reported for most of the radiological severity measures. There is a clear demand for automated evaluation of MR images in Crohn's disease (CD). This paper aims to introduce a preliminary suite of fundamental tools for assessment of CD severity. It involves procedures for image analysis, classification and visualization to predict the colonoscopy disease scores.


Assuntos
Simulação por Computador , Doenças Inflamatórias Intestinais/patologia , Modelos Biológicos , Proteína C-Reativa/metabolismo , Colo/patologia , Meios de Contraste , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Fatores de Tempo
7.
IEEE Trans Vis Comput Graph ; 16(6): 1329-38, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975173

RESUMO

Stream surfaces are an intuitive approach to represent 3D vector fields. In many cases, however, they are challenging objects to visualize and to understand, due to a high degree of self-occlusion. Despite the need for adequate rendering methods, little work has been done so far in this important research area. In this paper, we present an illustrative rendering strategy for stream surfaces. In our approach, we apply various rendering techniques, which are inspired by the traditional flow illustrations drawn by Dallmann and Abraham \& Shaw in the early 1980s. Among these techniques are contour lines and halftoning to show the overall surface shape. Flow direction as well as singularities on the stream surface are depicted by illustrative surface streamlines. ;To go beyond reproducing static text book images, we provide several interaction features, such as movable cuts and slabs allowing an interactive exploration of the flow and insights into subjacent structures, e.g., the inner windings of vortex breakdown bubbles. These methods take only the parameterized stream surface as input, require no further preprocessing, and can be freely combined by the user. We explain the design, GPU-implementation, and combination of the different illustrative rendering and interaction methods and demonstrate the potential of our approach by applying it to stream surfaces from various flow simulations. ;

8.
IEEE Trans Vis Comput Graph ; 14(6): 1475-82, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18988999

RESUMO

Understanding fluid flow data, especially vortices, is still a challenging task. Sophisticated visualization tools help to gain insight. In this paper, we present a novel approach for the interactive comparison of scalar fields using isosurfaces, and its application to fluid flow datasets. Features in two scalar fields are defined by largest contour segmentation after topological simplification. These features are matched using a volumetric similarity measure based on spatial overlap of individual features. The relationships defined by this similarity measure are ranked and presented in a thumbnail gallery of feature pairs and a graph representation showing all relationships between individual contours. Additionally, linked views of the contour trees are provided to ease navigation. The main render view shows the selected features overlapping each other. Thus, by displaying individual features and their relationships in a structured fashion, we enable exploratory visualization of correlations between similar structures in two scalar fields. We demonstrate the utility of our approach by applying it to a number of complex fluid flow datasets, where the emphasis is put on the comparison of vortex related scalar quantities.

9.
IEEE Trans Vis Comput Graph ; 13(6): 1735-42, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17968132

RESUMO

We present a method to extract and visualize vortices that originate from bounding walls of three-dimensional time-dependent flows. These vortices can be detected using their footprint on the boundary, which consists of critical points in the wall shear stress vector field. In order to follow these critical points and detect their transformations, affected regions of the surface are parameterized. Thus, an existing singularity tracking algorithm devised for planar settings can be applied. The trajectories of the singularities are used as a basis for seeding particles. This leads to a new type of streak line visualization, in which particles are released from a moving source. These generalized streak lines visualize the particles that are ejected from the wall. We demonstrate the usefulness of our method on several transient fluid flow datasets from computational fluid dynamics simulations.

10.
IEEE Trans Vis Comput Graph ; 13(4): 641-51, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17495325

RESUMO

We present, extend, and apply a method to extract the contribution of a subregion of a data set to the global flow. To isolate this contribution, we decompose the flow in the subregion into a potential flow that is induced by the original flow on the boundary and a localized flow. The localized flow is obtained by subtracting the potential flow from the original flow. Since the potential flow is free of both divergence and rotation, the localized flow retains the original features and captures the region-specific flow that contains the local contribution of the considered subdomain to the global flow. In the remainder of the paper, we describe an implementation on unstructured grids in both two and three dimensions for steady and unsteady flow fields. We discuss the application of some widely used feature extraction methods on the localized flow and describe applications like reverse-flow detection using the potential flow. Finally, we show that our algorithm is robust and scalable by applying it to various flow data sets and giving performance figures.


Assuntos
Algoritmos , Gráficos por Computador , Imageamento Tridimensional/métodos , Modelos Teóricos , Análise Numérica Assistida por Computador , Reologia/métodos , Interface Usuário-Computador , Simulação por Computador , Apresentação de Dados , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA