Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 4, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172915

RESUMO

BACKGROUND: Dysregulated Notch signalling contributes to breast cancer development and progression, but validated tools to measure the level of Notch signalling in breast cancer subtypes and in response to systemic therapy are largely lacking. A transcriptomic signature of Notch signalling would be warranted, for example to monitor the effects of future Notch-targeting therapies and to learn whether altered Notch signalling is an off-target effect of current breast cancer therapies. In this report, we have established such a classifier. METHODS: To generate the signature, we first identified Notch-regulated genes from six basal-like breast cancer cell lines subjected to elevated or reduced Notch signalling by culturing on immobilized Notch ligand Jagged1 or blockade of Notch by γ-secretase inhibitors, respectively. From this cadre of Notch-regulated genes, we developed candidate transcriptomic signatures that were trained on a breast cancer patient dataset (the TCGA-BRCA cohort) and a broader breast cancer cell line cohort and sought to validate in independent datasets. RESULTS: An optimal 20-gene transcriptomic signature was selected. We validated the signature on two independent patient datasets (METABRIC and Oslo2), and it showed an improved coherence score and tumour specificity compared with previously published signatures. Furthermore, the signature score was particularly high for basal-like breast cancer, indicating an enhanced level of Notch signalling in this subtype. The signature score was increased after neoadjuvant treatment in the PROMIX and BEAUTY patient cohorts, and a lower signature score generally correlated with better clinical outcome. CONCLUSIONS: The 20-gene transcriptional signature will be a valuable tool to evaluate the response of future Notch-targeting therapies for breast cancer, to learn about potential effects on Notch signalling from conventional breast cancer therapies and to better stratify patients for therapy considerations.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
2.
Mol Cancer Ther ; 23(2): 159-173, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37940144

RESUMO

N-terminal processing by methionine aminopeptidases (MetAP) is a crucial step in the maturation of proteins during protein biosynthesis. Small-molecule inhibitors of MetAP2 have antiangiogenic and antitumoral activity. Herein, we characterize the structurally novel MetAP2 inhibitor M8891. M8891 is a potent, selective, reversible small-molecule inhibitor blocking the growth of human endothelial cells and differentially inhibiting cancer cell growth. A CRISPR genome-wide screen identified the tumor suppressor p53 and MetAP1/MetAP2 as determinants of resistance and sensitivity to pharmacologic MetAP2 inhibition. A newly identified substrate of MetAP2, translation elongation factor 1-alpha-1 (EF1a-1), served as a pharmacodynamic biomarker to follow target inhibition in cell and mouse studies. Robust angiogenesis and tumor growth inhibition was observed with M8891 monotherapy. In combination with VEGF receptor inhibitors, tumor stasis and regression occurred in patient-derived xenograft renal cell carcinoma models, particularly those that were p53 wild-type, had Von Hippel-Landau gene (VHL) loss-of-function mutations, and a mid/high MetAP1/2 expression score.


Assuntos
Aminopeptidases , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Células Endoteliais/metabolismo , Metaloendopeptidases/metabolismo , Inibidores Enzimáticos , Inibidores da Angiogênese/farmacologia , Neoplasias Renais/tratamento farmacológico
3.
Biochem Pharmacol ; 215: 115755, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37607620

RESUMO

Induction of cytochrome P450 (CYP) genes constitutes an important cause of drug-drug interactions and preclinical evaluation of induction liability is mandatory for novel drug candidates. YAP/TEAD signaling has emerged as an attractive target for various oncological indications and multiple chemically distinct YAP/TEAD inhibitors are rapidly progressing towards clinical stages. Here, we tested the liability for CYP induction of a diverse set of YAP/TEAD inhibitors with different modes of action and TEAD isoform selectivity profiles in monolayers and 3D spheroids of primary human hepatocytes (PHH). We found that YAP/TEAD inhibition resulted in broad induction of CYPs in 2D monolayers, whereas, if at all, only marginal induction was seen in spheroid culture. Comprehensive RNA-Seq indicated that YAP/TEAD signaling was increased in 2D culture compared to spheroids, which was paralleled by elevated activities of the interacting transcription factors LXR and ESRRA, likely at least in part due to altered mechanosensing. Inhibition of this YAP/TEAD hyperactivation resulted in an overall reduction of hepatocyte dedifferentiation marked by increased hepatic functionality, including CYPs. These results thus demonstrate that the observed induction is due to on-target effects of the compounds rather than direct activation of xenobiotic sensing nuclear receptors. Combined, the presented data link hepatocyte dedifferentiation to YAP/TEAD dysregulation, reveal a novel non-canonical pathway of CYP induction and highlight the advantage of organotypic 3D cultures to predict clinically relevant pharmacokinetic properties, particularly for atypical induction mechanisms.


Assuntos
Sistema Enzimático do Citocromo P-450 , Transdução de Sinais , Humanos , Sistema Enzimático do Citocromo P-450/genética , Desdiferenciação Celular , Hepatócitos , Fatores de Transcrição
4.
J Med Chem ; 65(13): 9206-9229, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35763499

RESUMO

The dysregulated Hippo pathway and, consequently, hyperactivity of the transcriptional YAP/TAZ-TEAD complexes is associated with diseases such as cancer. Prevention of YAP/TAZ-TEAD triggered gene transcription is an attractive strategy for therapeutic intervention. The deeply buried and conserved lipidation pocket (P-site) of the TEAD transcription factors is druggable. The discovery and optimization of a P-site binding fragment (1) are described. Utilizing structure-based design, enhancement in target potency was engineered into the hit, capitalizing on the established X-ray structure of TEAD1. The efforts culminated in the optimized in vivo tool MSC-4106, which exhibited desirable potency, mouse pharmacokinetic properties, and in vivo efficacy. In close correlation to compound exposure, the time- and dose-dependent downregulation of a proximal biomarker could be shown.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo
5.
PLoS One ; 15(8): e0235319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32810173

RESUMO

Aberrant activation of the Wnt signalling pathway is required for tumour initiation and survival in the majority of colorectal cancers. The development of inhibitors of Wnt signalling has been the focus of multiple drug discovery programs targeting colorectal cancer and other malignancies associated with aberrant pathway activation. However, progression of new clinical entities targeting the Wnt pathway has been slow. One challenge lies with the limited predictive power of 2D cancer cell lines because they fail to fully recapitulate intratumoural phenotypic heterogeneity. In particular, the relationship between 2D cancer cell biology and cancer stem cell function is poorly understood. By contrast, 3D tumour organoids provide a platform in which complex cell-cell interactions can be studied. However, complex 3D models provide a challenging platform for the quantitative analysis of drug responses of therapies that have differential effects on tumour cell subpopulations. Here, we generated tumour organoids from colorectal cancer patients and tested their responses to inhibitors of Tankyrase (TNKSi) which are known to modulate Wnt signalling. Using compounds with 3 orders of magnitude difference in cellular mechanistic potency together with image-based assays, we demonstrate that morphometric analyses can capture subtle alterations in organoid responses to Wnt inhibitors that are consistent with activity against a cancer stem cell subpopulation. Overall our study highlights the value of phenotypic readouts as a quantitative method to asses drug-induced effects in a relevant preclinical model.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Organoides/efeitos dos fármacos , Tanquirases/antagonistas & inibidores , Adulto , Animais , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/patologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Organoides/patologia
6.
Sci Rep ; 9(1): 201, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655555

RESUMO

Inhibition of the PARP superfamily tankyrase enzymes suppresses Wnt/ß-catenin signalling in tumour cells. Here, we describe here a novel, drug-like small molecule inhibitor of tankyrase MSC2504877 that inhibits the growth of APC mutant colorectal tumour cells. Parallel siRNA and drug sensitivity screens showed that the clinical CDK4/6 inhibitor palbociclib, causes enhanced sensitivity to MSC2504877. This tankyrase inhibitor-CDK4/6 inhibitor combinatorial effect is not limited to palbociclib and MSC2504877 and is elicited with other CDK4/6 inhibitors and toolbox tankyrase inhibitors. The addition of MSC2504877 to palbociclib enhances G1 cell cycle arrest and cellular senescence in tumour cells. MSC2504877 exposure suppresses the upregulation of Cyclin D2 and Cyclin E2 caused by palbociclib and enhances the suppression of phospho-Rb, providing a mechanistic explanation for these effects. The combination of MSC2504877 and palbociclib was also effective in suppressing the cellular hyperproliferative phenotype seen in Apc defective intestinal stem cells in vivo. However, the presence of an oncogenic Kras p.G12D mutation in mice reversed the effects of the MSC2504877/palbociclib combination, suggesting one molecular route that could lead to drug resistance.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Tanquirases/antagonistas & inibidores , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Inibidores Enzimáticos/uso terapêutico , Humanos , Camundongos , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico
7.
Nat Commun ; 8: 14262, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186126

RESUMO

Colorectal carcinoma represents a heterogeneous entity, with only a fraction of the tumours responding to available therapies, requiring a better molecular understanding of the disease in precision oncology. To address this challenge, the OncoTrack consortium recruited 106 CRC patients (stages I-IV) and developed a pre-clinical platform generating a compendium of drug sensitivity data totalling >4,000 assays testing 16 clinical drugs on patient-derived in vivo and in vitro models. This large biobank of 106 tumours, 35 organoids and 59 xenografts, with extensive omics data comparing donor tumours and derived models provides a resource for advancing our understanding of CRC. Models recapitulate many of the genetic and transcriptomic features of the donors, but defined less complex molecular sub-groups because of the loss of human stroma. Linking molecular profiles with drug sensitivity patterns identifies novel biomarkers, including a signature outperforming RAS/RAF mutations in predicting sensitivity to the EGFR inhibitor cetuximab.


Assuntos
Biomarcadores Tumorais/genética , Cetuximab/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
8.
Elife ; 52016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27935476

RESUMO

Mediator-associated kinases CDK8/19 are context-dependent drivers or suppressors of tumorigenesis. Their inhibition is predicted to have pleiotropic effects, but it is unclear whether this will impact on the clinical utility of CDK8/19 inhibitors. We discovered two series of potent chemical probes with high selectivity for CDK8/19. Despite pharmacodynamic evidence for robust on-target activity, the compounds exhibited modest, though significant, efficacy against human tumor lines and patient-derived xenografts. Altered gene expression was consistent with CDK8/19 inhibition, including profiles associated with super-enhancers, immune and inflammatory responses and stem cell function. In a mouse model expressing oncogenic beta-catenin, treatment shifted cells within hyperplastic intestinal crypts from a stem cell to a transit amplifying phenotype. In two species, neither probe was tolerated at therapeutically-relevant exposures. The complex nature of the toxicity observed with two structurally-differentiated chemical series is consistent with on-target effects posing significant challenges to the clinical development of CDK8/19 inhibitors.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antineoplásicos/administração & dosagem , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Complexo Mediador/antagonistas & inibidores , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/toxicidade , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Modelos Animais de Doenças , Xenoenxertos , Humanos , Hiperplasia/tratamento farmacológico , Camundongos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/toxicidade , Resultado do Tratamento
9.
J Med Chem ; 59(20): 9337-9349, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27490956

RESUMO

The mediator complex-associated cyclin dependent kinase CDK8 regulates ß-catenin-dependent transcription following activation of WNT signaling. Multiple lines of evidence suggest CDK8 may act as an oncogene in the development of colorectal cancer. Here we describe the successful optimization of an imidazo-thiadiazole series of CDK8 inhibitors that was identified in a high-throughput screening campaign and further progressed by structure-based design. In several optimization cycles, we improved the microsomal stability, potency, and kinase selectivity. The initial imidazo-thiadiazole scaffold was replaced by a 3-methyl-1H-pyrazolo[3,4-b]-pyridine which resulted in compound 25 (MSC2530818) that displayed excellent kinase selectivity, biochemical and cellular potency, microsomal stability, and is orally bioavailable. Furthermore, we demonstrated modulation of phospho-STAT1, a pharmacodynamic biomarker of CDK8 activity, and tumor growth inhibition in an APC mutant SW620 human colorectal carcinoma xenograft model after oral administration. Compound 25 demonstrated suitable potency and selectivity to progress into preclinical in vivo efficacy and safety studies.


Assuntos
Antineoplásicos/farmacologia , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Tiadiazóis/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Quinase 8 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química
10.
ACS Med Chem Lett ; 7(6): 573-8, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326329

RESUMO

We demonstrate a designed scaffold-hop approach to the discovery of 2,8-disubstituted-1,6-naphthyridine- and 4,6-disubstituted-isoquinoline-based dual CDK8/19 ligands. Optimized compounds in both series exhibited rapid aldehyde oxidase-mediated metabolism, which could be abrogated by introduction of an amino substituent at C5 of the 1,6-naphthyridine scaffold or at C1 of the isoquinoline scaffold. Compounds 51 and 59 were progressed to in vivo pharmacokinetic studies, and 51 also demonstrated sustained inhibition of STAT1(SER727) phosphorylation, a biomarker of CDK8 inhibition, in an SW620 colorectal carcinoma human tumor xenograft model following oral dosing.

11.
Bioorg Med Chem Lett ; 26(5): 1443-51, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26852363

RESUMO

Here we describe the discovery and optimization of 3-benzylindazoles as potent and selective inhibitors of CDK8, also modulating CDK19, discovered from a high-throughput screening (HTS) campaign sampling the Merck compound collection. The primary hits with strong HSP90 affinity were subsequently optimized to potent and selective CDK8 inhibitors which demonstrate inhibition of WNT pathway activity in cell-based assays. X-ray crystallographic data demonstrated that 3-benzylindazoles occupy the ATP binding site of CDK8 and adopt a Type I binding mode. Medicinal chemistry optimization successfully led to improved potency, physicochemical properties and oral pharmacokinetics. Modulation of phospho-STAT1, a pharmacodynamic biomarker of CDK8, was demonstrated in an APC-mutant SW620 human colorectal carcinoma xenograft model following oral administration.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Proteínas de Choque Térmico HSP90/metabolismo , Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Neoplasias Colorretais/metabolismo , Cristalografia por Raios X , Quinase 8 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Indazóis/administração & dosagem , Indazóis/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Ratos , Relação Estrutura-Atividade , Especificidade por Substrato
12.
J Med Chem ; 59(3): 1078-101, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26796641

RESUMO

The Mediator complex-associated cyclin-dependent kinase CDK8 has been implicated in human disease, particularly in colorectal cancer where it has been reported as a putative oncogene. Here we report the discovery of 109 (CCT251921), a potent, selective, and orally bioavailable inhibitor of CDK8 with equipotent affinity for CDK19. We describe a structure-based design approach leading to the discovery of a 3,4,5-trisubstituted-2-aminopyridine series and present the application of physicochemical property analyses to successfully reduce in vivo metabolic clearance, minimize transporter-mediated biliary elimination while maintaining acceptable aqueous solubility. Compound 109 affords the optimal compromise of in vitro biochemical, pharmacokinetic, and physicochemical properties and is suitable for progression to animal models of cancer.


Assuntos
Aminopiridinas/farmacologia , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/antagonistas & inibidores , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/farmacologia , Administração Oral , Aminopiridinas/administração & dosagem , Aminopiridinas/química , Animais , Disponibilidade Biológica , Células CACO-2 , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Ratos , Ratos Wistar , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Solubilidade , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Chem Biol ; 11(12): 973-980, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26502155

RESUMO

There is unmet need for chemical tools to explore the role of the Mediator complex in human pathologies ranging from cancer to cardiovascular disease. Here we determine that CCT251545, a small-molecule inhibitor of the WNT pathway discovered through cell-based screening, is a potent and selective chemical probe for the human Mediator complex-associated protein kinases CDK8 and CDK19 with >100-fold selectivity over 291 other kinases. X-ray crystallography demonstrates a type 1 binding mode involving insertion of the CDK8 C terminus into the ligand binding site. In contrast to type II inhibitors of CDK8 and CDK19, CCT251545 displays potent cell-based activity. We show that CCT251545 and close analogs alter WNT pathway-regulated gene expression and other on-target effects of modulating CDK8 and CDK19, including expression of genes regulated by STAT1. Consistent with this, we find that phosphorylation of STAT1(SER727) is a biomarker of CDK8 kinase activity in vitro and in vivo. Finally, we demonstrate in vivo activity of CCT251545 in WNT-dependent tumors.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Quinase 8 Dependente de Ciclina/antagonistas & inibidores , Quinase 8 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Sondas Moleculares/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Compostos de Espiro/farmacologia , Linhagem Celular Tumoral , Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Humanos , Modelos Moleculares , Sondas Moleculares/química , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Piridinas/química , Compostos de Espiro/química
14.
J Med Chem ; 58(4): 1717-35, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25680029

RESUMO

WNT signaling is frequently deregulated in malignancy, particularly in colon cancer, and plays a key role in the generation and maintenance of cancer stem cells. We report the discovery and optimization of a 3,4,5-trisubstituted pyridine 9 using a high-throughput cell-based reporter assay of WNT pathway activity. We demonstrate a twisted conformation about the pyridine-piperidine bond of 9 by small-molecule X-ray crystallography. Medicinal chemistry optimization to maintain this twisted conformation, cognisant of physicochemical properties likely to maintain good cell permeability, led to 74 (CCT251545), a potent small-molecule inhibitor of WNT signaling with good oral pharmacokinetics. We demonstrate inhibition of WNT pathway activity in a solid human tumor xenograft model with evidence for tumor growth inhibition following oral dosing. This work provides a successful example of hypothesis-driven medicinal chemistry optimization from a singleton hit against a cell-based pathway assay without knowledge of the biochemical target.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Luciferases/antagonistas & inibidores , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Compostos de Espiro/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Bioensaio/métodos , Disponibilidade Biológica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cristalografia por Raios X , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Luciferases/metabolismo , Camundongos , Modelos Moleculares , Estrutura Molecular , Piridinas/administração & dosagem , Piridinas/química , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Compostos de Espiro/administração & dosagem , Compostos de Espiro/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Res ; 67(21): 10230-40, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17974964

RESUMO

Tumor cell invasion into the surrounding stroma requires increased cell motility and extensive remodeling of the extracellular matrix. Endo180 (CD280, MRC2, urokinase-type plasminogen activator receptor-associated protein) is a recycling endocytic receptor that functions in both these cellular activities by promoting cell migration and uptake of collagens for intracellular degradation. In the normal breast, Endo180 is predominantly expressed by stromal fibroblasts. The contrary observation that Endo180 is expressed on epithelial tumor cell lines that display a high invasive capacity suggested that up-regulation of this receptor may be an associated and functional component in the acquisition of a more aggressive phenotype by tumor cells in vivo. Here, we show that high levels of Endo180 are found in a subset of basal-like breast cancers and that this expression is an independent prognostic marker for shorter disease-free survival. Two potential mechanisms for Endo180 up-regulation were uncovered. First, it was shown that Endo180 can be transcriptionally up-regulated in vitro following transforming growth factor-beta treatment of breast cancer cells. Second, a proportion of Endo180(+) tumors were shown to have Endo180 gene copy number gains and amplifications. To investigate the functional consequence of Endo180 up-regulation, MCF7 cells transfected with Endo180 were inoculated into immunocompromised mice. Expression of wild-type Endo180, but not an internalization-defective Endo180 mutant, resulted in enhanced tumor growth together with a reduction in tumor collagen content. Together, these data argue that elevated expression of this receptor in tumor cells could have important consequences in subsets of basal-like carcinomas for which there is a current lack of effective treatment.


Assuntos
Neoplasias da Mama/patologia , Receptores Mitogênicos/fisiologia , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Receptores Mitogênicos/genética , Análise Serial de Tecidos
16.
Gene Expr Patterns ; 7(3): 363-9, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16965941

RESUMO

Endosialin has been assigned the alternate name of tumour endothelial marker 1 (TEM1) due to its identification as a highly upregulated gene transcript in tumour endothelium compared to normal endothelium. As a consequence there is interest in endosialin as a potential therapeutic target in cancer treatment. However, there are conflicting reports over the nature of vascular expression in tumours with some evidence that endosialin is expressed on perivascular pericytes rather than the endothelial cells themselves. To address this, we have analysed the expression of endosialin in mouse embryos, newborn pups and adults. In the embryo endosialin is predominantly expressed on stromal fibroblasts throughout the mesenchyme but expression is also observed on the developing vasculature. When analysed by confocal microscopy endosialin on vessels does not colocalise with endothelial cells expressing CD31. Rather, endosialin is restricted to closely associated perivascular cells that also express the pericyte marker NG2. Finally, the fibroblast and pericyte expression of endosialin changes dynamically during development and becomes highly restricted in adult mouse tissues. This evolving picture of endosialin expression in sites of active tissue remodelling and neovascularisation has implications in tumour growth, angiogenesis and metastasis.


Assuntos
Antígenos CD/genética , Sistema Nervoso Central/irrigação sanguínea , Regulação para Baixo , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Neoplasias/genética , Pericitos/metabolismo , Animais , Animais Recém-Nascidos , Antígenos/genética , Embrião de Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteoglicanas/genética , Células Estromais/metabolismo
17.
J Cell Biol ; 175(2): 337-47, 2006 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17043135

RESUMO

The regulated assembly and disassembly of focal adhesions and adherens junctions contributes to cell motility and tumor invasion. Pivotal in this process is phosphorylation of myosin light chain-2 (MLC2) by Rho kinase (ROCK) downstream of Rho activation, which generates the contractile force necessary to drive disassembly of epithelial cell-cell junctions and cell-matrix adhesions at the rear of migrating cells. How Rho-ROCK-MLC2 activation occurs at these distinct cellular locations is not known, but the emerging concept that endocytic dynamics can coordinate key intracellular signaling events provides vital clues. We report that endosomes containing the promigratory receptor Endo180 (CD280) can generate Rho-ROCK-MLC2-based contractile signals. Moreover, we provide evidence for a cellular mechanism in which Endo180-containing endosomes are spatially localized to facilitate their contractile signals directly at sites of adhesion turnover. We propose migration driven by Endo180 as a model for the spatial regulation of contractility and adhesion dynamics by endosomes.


Assuntos
Miosinas Cardíacas/metabolismo , Adesão Celular , Endossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cadeias Leves de Miosina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Movimento Celular , Matriz Extracelular/metabolismo , Citometria de Fluxo , Humanos , Immunoblotting , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Fosforilação , Receptores de Superfície Celular/metabolismo , Receptores Mitogênicos/antagonistas & inibidores , Receptores Mitogênicos/genética , Receptores da Transferrina/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Transdução de Sinais , Células Tumorais Cultivadas , Quinases Associadas a rho
18.
Eur J Cell Biol ; 85(9-10): 991-1000, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16750281

RESUMO

We have analysed the domain structure of vacuolin, a Dictyostelium protein binding to the cytoplasmic surface of late endosomes. Localisation studies using GFP fusions together with a yeast two-hybrid analysis and co-immunoprecipitation experiments reveal that a region close to the C-terminus mediates oligomer formation of the protein through a coiled-coil mechanism which in turn is a prerequisite for the efficient binding to endosomal membranes via a prohibitin (PHB) domain in the middle of the molecule. Overexpression of the coiled-coil domain strongly competes with endogenous vacuolin in the oligomers and reduces the efficiency of membrane targeting. The domain arrangement of vacuolin is most similar to flotillin/reggie, a protein found on late endosomes of mammalian cells.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Dictyostelium/metabolismo , Endossomos/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Citoesqueleto/genética , Dictyostelium/citologia , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
19.
Eur J Immunol ; 36(5): 1074-82, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16619293

RESUMO

Mannose receptor (MR) is the best characterised member of a family of four endocytic molecules that share a common domain structure; a cysteine-rich (CR) domain, a fibronectin-type II (FNII) domain and tandemly arranged C-type lectin-like domains (CTLD, eight in the case of MR). Two distinct lectin activities have been described for MR. The CR domain recognises sulphated carbohydrates while the CTLD mediate binding to mannose, fucose or N-acetylglucosamine. FNII domains are known to be important for collagen binding and this has been studied in the context of two members of the MR family, Endo180 and the phospholipase A2 receptor. Here, we have investigated whether the broad and effective lectin activity mediated by the CR domain and CTLD of MR is favoured to the detriment of FNII-mediated interaction(s). We show that MR is able to bind and internalise collagen in a carbohydrate-independent manner and that MR deficient macrophages have a marked defect in collagen IV and gelatin internalisation. These data have major implications at the molecular level as there are now three distinct ligand-binding sites described for MR. Furthermore our findings extend the range of endogenous ligands recognised by MR, a molecule firmly placed at the interface between homeostasis and immunity.


Assuntos
Carboidratos/fisiologia , Colágeno/metabolismo , Lectinas Tipo C/fisiologia , Macrófagos/fisiologia , Lectinas de Ligação a Manose/fisiologia , Receptores de Superfície Celular/fisiologia , Animais , Sítios de Ligação , Colágeno/química , Fibronectinas/metabolismo , Gelatina/metabolismo , Lectinas Tipo C/química , Receptor de Manose , Lectinas de Ligação a Manose/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/química
20.
J Biol Chem ; 281(13): 8780-7, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16452473

RESUMO

The mannose receptor family comprises four members in mammals, Endo180 (CD280), DEC-205 (CD205), phospholipase A(2) receptor (PLA(2)R) and the mannose receptor (MR, CD206), whose extracellular portion contains a similar domain arrangement: an N-terminal cysteine-rich domain (CysR) followed by a single fibronectin type II domain (FNII) and 8-10 C-type lectin-like domains (CTLDs). These proteins mediate diverse functions ranging from extracellular matrix turnover through collagen uptake to homeostasis and immunity based on sugar recognition. Endo180 and the MR are multivalent transmembrane receptors capable of interacting with multiple ligands; in both receptors FNII recognizes collagens, and a single CTLD retains lectin activity (CTLD2 in Endo180 and CTLD4 in MR). It is expected that the overall conformation of these multivalent molecules would deeply influence their function as the availability of their binding sites could be altered under different conditions. However, conflicting reports have been published on the three-dimensional arrangement of these receptors. Here, we have used single particle electron microscopy to elucidate the three-dimensional organization of the MR and Endo180. Strikingly, we have found that both receptors display distinct three-dimensional structures, which are, however, conceptually very similar: a bent and compact conformation built upon interactions of the CysR domain and the lone functional CTLD. Biochemical and electron microscopy experiments indicate that, under a low pH mimicking the endosomal environment, both MR and Endo180 experience large conformational changes. We propose a structural model for the mannose receptor family where at least two conformations exist that may serve to regulate differences in ligand selectivity.


Assuntos
Lectinas Tipo C/química , Lectinas Tipo C/ultraestrutura , Lectinas de Ligação a Manose/química , Lectinas de Ligação a Manose/ultraestrutura , Microscopia Eletrônica , Receptores de Superfície Celular/química , Receptores de Superfície Celular/ultraestrutura , Receptores Mitogênicos/química , Receptores Mitogênicos/ultraestrutura , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Receptor de Manose , Modelos Estruturais , Conformação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA