Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JMIR AI ; 3: e52054, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875581

RESUMO

BACKGROUND: Large curated data sets are required to leverage speech-based tools in health care. These are costly to produce, resulting in increased interest in data sharing. As speech can potentially identify speakers (ie, voiceprints), sharing recordings raises privacy concerns. This is especially relevant when working with patient data protected under the Health Insurance Portability and Accountability Act. OBJECTIVE: We aimed to determine the reidentification risk for speech recordings, without reference to demographics or metadata, in clinical data sets considering both the size of the search space (ie, the number of comparisons that must be considered when reidentifying) and the nature of the speech recording (ie, the type of speech task). METHODS: Using a state-of-the-art speaker identification model, we modeled an adversarial attack scenario in which an adversary uses a large data set of identified speech (hereafter, the known set) to reidentify as many unknown speakers in a shared data set (hereafter, the unknown set) as possible. We first considered the effect of search space size by attempting reidentification with various sizes of known and unknown sets using VoxCeleb, a data set with recordings of natural, connected speech from >7000 healthy speakers. We then repeated these tests with different types of recordings in each set to examine whether the nature of a speech recording influences reidentification risk. For these tests, we used our clinical data set composed of recordings of elicited speech tasks from 941 speakers. RESULTS: We found that the risk was inversely related to the number of comparisons an adversary must consider (ie, the search space), with a positive linear correlation between the number of false acceptances (FAs) and the number of comparisons (r=0.69; P<.001). The true acceptances (TAs) stayed relatively stable, and the ratio between FAs and TAs rose from 0.02 at 1 × 105 comparisons to 1.41 at 6 × 106 comparisons, with a near 1:1 ratio at the midpoint of 3 × 106 comparisons. In effect, risk was high for a small search space but dropped as the search space grew. We also found that the nature of a speech recording influenced reidentification risk, with nonconnected speech (eg, vowel prolongation: FA/TA=98.5; alternating motion rate: FA/TA=8) being harder to identify than connected speech (eg, sentence repetition: FA/TA=0.54) in cross-task conditions. The inverse was mostly true in within-task conditions, with the FA/TA ratio for vowel prolongation and alternating motion rate dropping to 0.39 and 1.17, respectively. CONCLUSIONS: Our findings suggest that speaker identification models can be used to reidentify participants in specific circumstances, but in practice, the reidentification risk appears small. The variation in risk due to search space size and type of speech task provides actionable recommendations to further increase participant privacy and considerations for policy regarding public release of speech recordings.

2.
Brain Commun ; 5(2): fcad058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013176

RESUMO

From a complex systems perspective, clinical syndromes emerging from neurodegenerative diseases are thought to result from multiscale interactions between aggregates of misfolded proteins and the disequilibrium of large-scale networks coordinating functional operations underpinning cognitive phenomena. Across all syndromic presentations of Alzheimer's disease, age-related disruption of the default mode network is accelerated by amyloid deposition. Conversely, syndromic variability may reflect selective neurodegeneration of modular networks supporting specific cognitive abilities. In this study, we leveraged the breadth of the Human Connectome Project-Aging cohort of non-demented individuals (N = 724) as a normative cohort to assess the robustness of a biomarker of default mode network dysfunction in Alzheimer's disease, the network failure quotient, across the aging spectrum. We then examined the capacity of the network failure quotient and focal markers of neurodegeneration to discriminate patients with amnestic (N = 8) or dysexecutive (N = 10) Alzheimer's disease from the normative cohort at the patient level, as well as between Alzheimer's disease phenotypes. Importantly, all participants and patients were scanned using the Human Connectome Project-Aging protocol, allowing for the acquisition of high-resolution structural imaging and longer resting-state connectivity acquisition time. Using a regression framework, we found that the network failure quotient related to age, global and focal cortical thickness, hippocampal volume, and cognition in the normative Human Connectome Project-Aging cohort, replicating previous results from the Mayo Clinic Study of Aging that used a different scanning protocol. Then, we used quantile curves and group-wise comparisons to show that the network failure quotient commonly distinguished both dysexecutive and amnestic Alzheimer's disease patients from the normative cohort. In contrast, focal neurodegeneration markers were more phenotype-specific, where the neurodegeneration of parieto-frontal areas associated with dysexecutive Alzheimer's disease, while the neurodegeneration of hippocampal and temporal areas associated with amnestic Alzheimer's disease. Capitalizing on a large normative cohort and optimized imaging acquisition protocols, we highlight a biomarker of default mode network failure reflecting shared system-level pathophysiological mechanisms across aging and dysexecutive and amnestic Alzheimer's disease and biomarkers of focal neurodegeneration reflecting distinct pathognomonic processes across the amnestic and dysexecutive Alzheimer's disease phenotypes. These findings provide evidence that variability in inter-individual cognitive impairment in Alzheimer's disease may relate to both modular network degeneration and default mode network disruption. These results provide important information to advance complex systems approaches to cognitive aging and degeneration, expand the armamentarium of biomarkers available to aid diagnosis, monitor progression and inform clinical trials.

3.
Neuropsychology ; 37(6): 698-715, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36037486

RESUMO

OBJECTIVE: Growing evidence supports the importance of learning as a central deficit in preclinical/prodromal Alzheimer's disease. The aims of this study were to conduct a series of neural network simulations to develop a functional understanding of a distributed, nonmodular memory system that can learn efficiently without interference. This understanding is applied to the development of a novel digital memory test. METHOD: Simulations using traditional feed forward neural network architectures to learn simple logic problems are presented. The simulations demonstrate three limitations: (a) inefficiency, (b) an inability to learn problems consistently, and (c) catastrophic interference when given multiple problems. A new mirrored cascaded architecture is introduced to address these limitations, with support provided by a series of simulations. RESULTS: The mirrored cascaded architecture demonstrates efficient and consistent learning relative to feed forward networks but also suffers from catastrophic interference. Addition of context values to add the capability of distinguishing features as part of learning eliminates the problem of interference in the mirrored cascaded, but not the feed forward, architectures. CONCLUSIONS: A mirrored cascaded architecture addresses the limitations of traditional feed forward neural networks, provides support for a distributed memory system, and emphasizes the importance of context to avoid interference. These process models contributed to the design of a digital computer-adaptive word list learning test that places maximum stress on the capability to distinguish specific episodes of learning. Process simulations provide a useful method of testing models of brain function and contribute to new approaches to neuropsychological assessment. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/psicologia , Redes Neurais de Computação , Aprendizagem , Aprendizagem Verbal , Disfunção Cognitiva/psicologia
4.
Alzheimers Dement (Amst) ; 6: 152-161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28275697

RESUMO

INTRODUCTION: Biomarkers for Alzheimer's disease (AD) pathophysiology have been developed that focus on various levels of brain organization. However, no robust biomarker of large-scale network failure has been developed. Using the recently introduced cascading network failure model of AD, we developed the network failure quotient (NFQ) as a biomarker of this process. METHODS: We developed and optimized the NFQ using our recently published analyses of task-free functional magnetic resonance imaging data in clinically normal (n = 43) and AD dementia participants (n = 28) from the Alzheimer's Disease Neuroimaging Initiative. The optimized NFQ (oNFQ) was then validated in a cohort spanning the AD spectrum from the Mayo Clinic (n = 218). RESULTS: The oNFQ (d = 1.25, 95% confidence interval [1.25, 1.26]) had the highest effect size for differentiating persons with AD dementia from clinically normal participants. The oNFQ measure performed similarly well on the validation Mayo Clinic sample (d = 1.44, 95% confidence interval [1.43, 1.44]). The oNFQ was also associated with other available key biomarkers in the Mayo cohort. DISCUSSION: This study demonstrates a measure of functional connectivity, based on a cascading network failure model of AD, and was highly successful in identifying AD dementia. A robust biomarker of the large-scale effects of AD pathophysiology will allow for richer descriptions of the disease process and its modifiers, but is not currently suitable for discriminating clinical diagnostic categories. The large-scale network level may be one of the earliest manifestations of AD, making this an attractive target for continued biomarker development to be used in prevention trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA