Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 9(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37074153

RESUMO

Wastewater-based epidemiology has been used extensively throughout the COVID-19 (coronavirus disease 19) pandemic to detect and monitor the spread and prevalence of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and its variants. It has proven an excellent, complementary tool to clinical sequencing, supporting the insights gained and helping to make informed public-health decisions. Consequently, many groups globally have developed bioinformatics pipelines to analyse sequencing data from wastewater. Accurate calling of mutations is critical in this process and in the assignment of circulating variants; yet, to date, the performance of variant-calling algorithms in wastewater samples has not been investigated. To address this, we compared the performance of six variant callers (VarScan, iVar, GATK, FreeBayes, LoFreq and BCFtools), used widely in bioinformatics pipelines, on 19 synthetic samples with known ratios of three different SARS-CoV-2 variants of concern (VOCs) (Alpha, Beta and Delta), as well as 13 wastewater samples collected in London between the 15th and 18th December 2021. We used the fundamental parameters of recall (sensitivity) and precision (specificity) to confirm the presence of mutational profiles defining specific variants across the six variant callers. Our results show that BCFtools, FreeBayes and VarScan found the expected variants with higher precision and recall than GATK or iVar, although the latter identified more expected defining mutations than other callers. LoFreq gave the least reliable results due to the high number of false-positive mutations detected, resulting in lower precision. Similar results were obtained for both the synthetic and wastewater samples.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Águas Residuárias , Algoritmos
2.
Microbiome ; 10(1): 44, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272699

RESUMO

BACKGROUND: The fungal pathogen Batrachochytrium dendrobatidis (Bd) threatens amphibian biodiversity and ecosystem stability worldwide. Amphibian skin microbial community structure has been linked to the clinical outcome of Bd infections, yet its overall functional importance is poorly understood. METHODS: Microbiome taxonomic and functional profiles were assessed using high-throughput bacterial 16S rRNA and fungal ITS2 gene sequencing, bacterial shotgun metagenomics and skin mucosal metabolomics. We sampled 56 wild midwife toads (Alytes obstetricans) from montane populations exhibiting Bd epizootic or enzootic disease dynamics. In addition, to assess whether disease-specific microbiome profiles were linked to microbe-mediated protection or Bd-induced perturbation, we performed a laboratory Bd challenge experiment whereby 40 young adult A. obstetricans were exposed to Bd or a control sham infection. We measured temporal changes in the microbiome as well as functional profiles of Bd-exposed and control animals at peak infection. RESULTS: Microbiome community structure and function differed in wild populations based on infection history and in experimental control versus Bd-exposed animals. Bd exposure in the laboratory resulted in dynamic changes in microbiome community structure and functional differences, with infection clearance in all but one infected animal. Sphingobacterium, Stenotrophomonas and an unclassified Commamonadaceae were associated with wild epizootic dynamics and also had reduced abundance in laboratory Bd-exposed animals that cleared infection, indicating a negative association with Bd resistance. This was further supported by microbe-metabolite integration which identified functionally relevant taxa driving disease outcome, of which Sphingobacterium and Bd were most influential in wild epizootic dynamics. The strong correlation between microbial taxonomic community composition and skin metabolome in the laboratory and field is inconsistent with microbial functional redundancy, indicating that differences in microbial taxonomy drive functional variation. Shotgun metagenomic analyses support these findings, with similar disease-associated patterns in beta diversity. Analysis of differentially abundant bacterial genes and pathways indicated that bacterial environmental sensing and Bd resource competition are likely to be important in driving infection outcomes. CONCLUSIONS: Bd infection drives altered microbiome taxonomic and functional profiles across laboratory and field environments. Our application of multi-omics analyses in experimental and field settings robustly predicts Bd disease dynamics and identifies novel candidate biomarkers of infection. Video Abstract.


Assuntos
Quitridiomicetos , Microbiota , Micoses , Animais , Anuros/genética , Anuros/microbiologia , Quitridiomicetos/genética , Microbiota/genética , Micoses/microbiologia , Micoses/veterinária , RNA Ribossômico 16S/genética
3.
Cell ; 184(20): 5179-5188.e8, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34499854

RESUMO

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Pandemias , Recombinação Genética , SARS-CoV-2/genética , Sequência de Bases/genética , COVID-19/virologia , Biologia Computacional/métodos , Frequência do Gene , Genoma Viral , Genótipo , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma/métodos
4.
Mol Ecol ; 30(5): 1322-1335, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33411382

RESUMO

Microbiome-pathogen interactions are increasingly recognized as an important element of host immunity. While these host-level interactions will have consequences for community disease dynamics, the factors which influence host microbiomes at larger scales are poorly understood. We here describe landscape-scale pathogen-microbiome associations within the context of post-epizootic amphibian chytridiomycosis, a disease caused by the panzootic chytrid fungus Batrachochytrium dendrobatidis. We undertook a survey of Neotropical amphibians across altitudinal gradients in Ecuador ~30 years following the observed amphibian declines and collected skin swab-samples which were metabarcoded using both fungal (ITS-2) and bacterial (r16S) amplicons. The data revealed marked variation in patterns of both B. dendrobatidis infection and microbiome structure that are associated with host life history. Stream breeding amphibians were most likely to be infected with B. dendrobatidis. This increased probability of infection was further associated with increased abundance and diversity of non-Batrachochytrium chytrid fungi in the skin and environmental microbiome. We also show that increased alpha diversity and the relative abundance of fungi are lower in the skin microbiome of adult stream amphibians compared to adult pond-breeding amphibians, an association not seen for bacteria. Finally, stream tadpoles exhibit lower proportions of predicted protective microbial taxa than pond tadpoles, suggesting reduced biotic resistance. Our analyses show that host breeding ecology strongly shapes pathogen-microbiome associations at a landscape scale, a trait that may influence resilience in the face of emerging infectious diseases.


Assuntos
Quitridiomicetos , Microbiota , Micoses , Anfíbios , Animais , Quitridiomicetos/genética , Equador , Microbiota/genética , Micoses/veterinária
5.
Elife ; 82019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30777146

RESUMO

The vertebrate eye originates from the eye field, a domain of cells specified by a small number of transcription factors. In this study, we show that Tcf7l1a is one such transcription factor that acts cell-autonomously to specify the eye field in zebrafish. Despite the much-reduced eye field in tcf7l1a mutants, these fish develop normal eyes revealing a striking ability of the eye to recover from a severe early phenotype. This robustness is not mediated through genetic compensation at neural plate stage; instead, the smaller optic vesicle of tcf7l1a mutants shows delayed neurogenesis and continues to grow until it achieves approximately normal size. Although the developing eye is robust to the lack of Tcf7l1a function, it is sensitised to the effects of additional mutations. In support of this, a forward genetic screen identified mutations in hesx1, cct5 and gdf6a, which give synthetically enhanced eye specification or growth phenotypes when in combination with the tcf7l1a mutation.


Assuntos
Olho/crescimento & desenvolvimento , Morfogênese , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Proliferação de Células , Embrião não Mamífero/metabolismo , Olho/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Cinética , Masculino , Mutação/genética , Placa Neural/embriologia , Neurogênese , Penetrância , Fenótipo , Prosencéfalo/embriologia , Proteína 1 Semelhante ao Fator 7 de Transcrição/genética , Regulação para Cima/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Zigoto/metabolismo
6.
R Soc Open Sci ; 5(6): 180211, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30110422

RESUMO

Batrachochytrium dendrobatidis (Bd) is a pathogen killing amphibians worldwide. Its impact across much of Asia is poorly characterized. This study systematically surveyed amphibians for Bd across rocky plateaus in the northern section of the Western Ghats biodiversity hotspot, India, including the first surveys of the plateaus in the coastal region. These ecosystems offer an epidemiological model system since they are characterized by differing levels of connectivity, edaphic and climatic conditions, and anthropogenic stressors. One hundred and eighteen individuals of 21 species of Anura and Apoda on 13 plateaus ranging from 67 to 1179 m above sea level and 15.89 to 17.92° North latitude were sampled. Using qPCR protocols, 79% of species and 27% of individuals tested were positive for Bd. This is the first record of Bd in caecilians in India, the Critically Endangered Xanthophryne tigerina and Endangered Fejervarya cf. sahyadris. Mean site prevalence was 28.15%. Prevalence below the escarpment was 31.2% and 25.4% above. The intensity of infection (GE) showed the reverse pattern. Infection may be related to elevational temperature changes, thermal exclusion, inter-site connectivity and anthropogenic disturbance. Coastal plateaus may be thermal refuges from Bd. Infected amphibians represented a wide range of ecological traits posing interesting questions about transmission routes.

7.
Sci Rep ; 8(1): 7772, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29773857

RESUMO

Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, necessitating the development of techniques to isolate these pathogens into culture for research purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after their inception, we find that these methods have been applied across 5 continents, 23 countries and in 62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) being recovered. Together, these methods have resulted in a significant reduction and refinement of our use of threatened amphibian species and have improved our ability to work with this group of emerging pathogens.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos/isolamento & purificação , Espécies em Perigo de Extinção , Animais , Disseminação de Informação , Larva/microbiologia , Software
8.
Science ; 360(6389): 621-627, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29748278

RESUMO

Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide.


Assuntos
Anfíbios/microbiologia , Extinção Biológica , África , América , Animais , Ásia , Austrália , Quitridiomicetos/classificação , Quitridiomicetos/genética , Quitridiomicetos/isolamento & purificação , Quitridiomicetos/patogenicidade , Europa (Continente) , Genes Fúngicos , Variação Genética , Hibridização Genética , Coreia (Geográfico) , Filogenia , Análise de Sequência de DNA , Virulência
9.
Nat Commun ; 8: 15048, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425465

RESUMO

Aquatic chytrid fungi threaten amphibian biodiversity worldwide owing to their ability to rapidly expand their geographical distributions and to infect a wide range of hosts. Combating this risk requires an understanding of chytrid host range to identify potential reservoirs of infection and to safeguard uninfected regions through enhanced biosecurity. Here we extend our knowledge on the host range of the chytrid Batrachochytrium dendrobatidis by demonstrating infection of a non-amphibian vertebrate host, the zebrafish. We observe dose-dependent mortality and show that chytrid can infect and proliferate on zebrafish tissue. We also show that infection phenotypes (fin erosion, cell apoptosis and muscle degeneration) are direct symptoms of infection. Successful infection is dependent on disrupting the zebrafish microbiome, highlighting that, as is widely found in amphibians, commensal bacteria confer protection against this pathogen. Collectively, our findings greatly expand the limited tool kit available to study pathogenesis and host response to chytrid infection.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos/fisiologia , Doenças dos Peixes/microbiologia , Peixe-Zebra/microbiologia , Nadadeiras de Animais/microbiologia , Animais , Interações Hospedeiro-Patógeno , Interações Microbianas , Microbiota/fisiologia
10.
Development ; 143(7): 1087-98, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26893342

RESUMO

Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye.


Assuntos
Fator 6 de Diferenciação de Crescimento/genética , Neurogênese/genética , Retina/embriologia , Tretinoína/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Ciclo Celular/genética , Proliferação de Células , Embrião não Mamífero/embriologia , Neurogênese/fisiologia , Transdução de Sinais/genética , Células-Tronco/citologia
11.
Dev Biol ; 366(2): 327-40, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22546689

RESUMO

The creation of molecular tools able to unravel in vivo spatiotemporal activation of specific cell signaling events during cell migration, differentiation and morphogenesis is of great relevance to developmental cell biology. Here, we describe the generation, validation and applications of two transgenic reporter lines for Wnt/ß-catenin signaling, named TCFsiam, and show that they are reliable and sensitive Wnt biosensors for in vivo studies. We demonstrate that these lines sensitively detect Wnt/ß-catenin pathway activity in several cellular contexts, from sensory organs to cardiac valve patterning. We provide evidence that Wnt/ß-catenin activity is involved in the formation and maintenance of the zebrafish CNS blood vessel network, on which sox10 neural crest-derived cells migrate and proliferate. We finally show that these transgenic lines allow for screening of Wnt signaling modifying compounds, tissue regeneration assessment as well as evaluation of potential Wnt/ß-catenin genetic modulators.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Técnicas Biossensoriais , Diferenciação Celular , Movimento Celular , Neurônios/citologia , Neurônios/fisiologia , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA