Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Biotechnol ; 62(4): 252-259, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32146690

RESUMO

Classic toxicology studies often utilize in vivo animal models. Newer approaches employing in vitro organ-specific cellular models have been developed in recent years to help accelerate the speed and reduce the cost of traditional toxicology testing. Toward the goal of supporting in vitro cellular model research with a regulatory application in mind, we have developed a 'designer' human kidney cell line called HK2-Vi that can fluorescently measure the cytotoxicity of potential toxins on proximal tubule cell viability in a direct exposure in vitro model. HK2-Vi was designed to be a reagent-less kinetic assay that can yield data on short- or long-term cell viability after toxin exposure. To generate HK2-Vi, we used monocistronic lentiviral transduction methods to genetically engineer a human kidney cell line called HK-2 to stably co-express two transgenes. The first is Perceval HR, which encodes a fluorescent biosensor of both cytosolic ATP and ADP and the second is pHRed, which encodes a biosensor of cytosolic pH. Relative levels of cellular ATP and ADP effectively serve as a reliable and robust indicator of cell viability. Because the fluorescence Perceval HR is pH-dependent, we co-expressed the pHRed genetic biosensor to correct for variations in pH if necessary. Heterogenous populations of transduced renal cells were enriched by flow cytometry before monoclonal cellular populations were isolated by cell culture methods. A single clonal population of co-transduced cells expressing both Perceval HR and pHRed was selected to be HK2-Vi. This established cell line can now serve as a tool for in vitro toxicology testing and the methods described herein serve as a model for developing designer cell lines derived from other organs.


Assuntos
Linhagem Celular , Túbulos Renais Proximais/efeitos dos fármacos , Testes de Toxicidade , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas Biossensoriais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fluorescência , Engenharia Genética , Humanos , Concentração de Íons de Hidrogênio , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Transgenes
2.
MethodsX ; 7: 100774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140439

RESUMO

Fatty acid esters of 3-monochloropropane-1,2-diol (3-MCPD) are chemical contaminants found in a wide range of edible oils that are thermally processed during industrial manufacturing of infant formula and other lipid-containing foods in the United States. Rodent studies have unequivocally demonstrated a plethora of in vivo toxicological effects including reproductive, neurological and renal dysfunction. To determine if similar effects are observed in human organ systems, in vitro studies using human cell lines are conducted to assess concordance of the data collected. One limitation to performing such in vitro research is the extremely high hydrophobicity of 3-MCPD esters; dissolving them into aqueous cell culture media is a tremendous challenge. To address this obstacle, we developed a simple protocol to circumvent the immiscibility of 3-MCPD esters and their corresponding free fatty acids into aqueous cell culture media in order to assess the effect of these esters on epithelial cells of kidney origin in vitro.

3.
J Toxicol Sci ; 45(1): 45-56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31932557

RESUMO

3-Monochloropropane-1,2-diol (3-MCPD) is a food processing contaminant in the U.S. food supply, detected in infant formula. In vivo rodent model studies have identified a variety of possible adverse outcomes from 3-MCPD exposure including renal effects like increased kidney weights, tubular hyperplasia, kidney tubular necrosis, and chronic progressive nephropathy. Given the lack of available in vivo toxicological assessments of 3-MCPD in humans and the limited availability of in vitro human cell studies, the health effects of 3-MCPD remain unclear. We used in vitro human proximal tubule cells represented by the HK-2 cell line to compare short- and long-term consequences to continuous exposure to this compound. After periodic lengths of exposure (0-100 mM) ranging from 1 to 16 days, we evaluated cell viability, mitochondrial integrity, oxidative stress, and a specific biomarker of proximal tubule injury, Kidney Injury Molecule-1 (KIM-1). Overall, we found that free 3-MCPD was generally more toxic at high concentrations or extended durations of exposure, but that its overall ability to induce cell injury was limited in this in vitro system. Further experiments will be needed to conduct a comprehensive safety assessment in infants who may be exposed to 3-MCPD through consumption of infant formula, as human renal physiology changes significantly during development.


Assuntos
Túbulos Renais Proximais/efeitos dos fármacos , alfa-Cloridrina/toxicidade , Linhagem Celular , Humanos , Fatores de Tempo
4.
Cell Biol Toxicol ; 36(3): 209-221, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31686351

RESUMO

Chloropropanols are chemical contaminants that can be formed during industrial processing of foods, such as lipids used in commercially available infant and toddler formula in the USA. Many researchers have studied the most common chloropropanol contaminant, 3-monochloropropane-1,2-diol (3-MCPD), as well as its lipid ester derivatives. A plethora of toxicological outcomes have been described in vivo, including effects on the heart, nervous system, reproductive organs, and kidneys. To better understand the concordance of some of these effects to in vitro outcomes, we focused our research on using an in vitro cellular model to investigate whether the proximal tubule cells of the kidney would be vulnerable to the effects of free 3-MCPD and nine of its common esters in commercial formula. Using the established human kidney proximal tubule cell line, HK-2, we performed 24-h treatments using 3-MCPD and nine mono- or di-esters derived from palmitate, oleate, and linoleate. By directly exposing HK-2 cells at treatment doses ranging from 0 to 100 µM, we could evaluate their effects on cell viability, mitochondrial health, reactive oxygen species (ROS) production, and other endpoints of toxicity. Since chloropropanols reportedly inhibit cellular metabolism through interference with glycolysis, we also tested the extent of this mechanism. Overall, we found mild but statistically significant evidence of cytotoxicity at the highest tested treatment concentrations, which were also associated with mitochondrial dysfunction and transient perturbations in cellular metabolism. Based on these findings, further studies will be required to better understand the effects of these compounds under conditions that are more physiologically relevant to human infant and toddler proximal tubules in order to mimic their exposure to chloropropanol-containing foods.


Assuntos
Túbulos Renais Proximais/metabolismo , alfa-Cloridrina/toxicidade , Linhagem Celular , Ésteres/farmacologia , Ácidos Graxos , Humanos , Rim/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , alfa-Cloridrina/análogos & derivados
5.
Front Oncol ; 9: 311, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134144

RESUMO

Background: Of the 1.8 million global incident lung cancer cases estimated in 2012, approximately 60% occurred in less developed regions. Prior studies suggest sex differences in lung cancer risk and a potential role for reproductive and hormonal factors in lung cancer among women. However, the majority of these studies were conducted in developed regions. No prior study has assessed these relationships among Nepali women. Methods: Using data from a hospital-based case-control study conducted in B. P. Koirala Memorial Cancer Hospital (Nepal, 2009-2012), relationships between reproductive and hormonal factors and lung cancer were examined among women aged 23-85 years. Lung cancer cases (n = 268) were frequency-matched to controls (n = 226) based on age (±5 years), ethnicity and residential area. The main exposures in this analysis included menopausal status, age at menarche, age at menopause, menstrual duration, gravidity, and age at first live-birth. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression. Results: Among postmenopausal women, those with a younger age at menopause (<45 years; 45-49 years) had an increased odds of lung cancer compared to those with an older (≥50 years) age at menopause [OR (95%CI): 2.14 (1.09, 4.17); OR (95% CI): 1.93 (1.07, 3.51)], after adjusting for age and cumulative active smoking years. No statistically significant associations were observed with the other reproductive and hormonal factors examined. Conclusion: These results suggest that Nepali women with prolonged exposure to endogenous ovarian hormones, via later age at menopause, may have a lower odds of lung cancer.

6.
Toxicol In Vitro ; 52: 87-93, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29890265

RESUMO

Carboxymethyl starches are added to food products for thickening or tablet binding/filling purposes. Although they lack toxicity, their synthesis creates the chemical byproduct diglycolic acid (DGA), which is difficult to eliminate and whose toxicity is in question. A rare case of an accidental direct exposure to extremely high concentrations of DGA in a person revealed that DGA has the potential to be toxic to several organs, with the kidneys and liver being the most affected organs. Given that DGA is present in our food supply as a chemical byproduct of carboxymethyl starch food additives, we sought to perform in vitro testing of its potential hepatotoxicity to help complement a recent in vivo rat acute dose-response study that also tested for the potential hepatotoxic effects of daily DGA ingestion by oral gavage over a period of 28 days. Using the HepG2/C3A cellular in vitro model, we tested how escalating doses of DGA exposure over 24 h could induce hepatotoxicity. Both in vitro and in vivo testing systems revealed that DGA is indeed a hepatotoxin once a certain exposure threshold is reached. The concordance of these models highlights the utility of in vitro testing to support and help predict in vivo findings.


Assuntos
Aditivos Alimentares , Glicolatos/toxicidade , Animais , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Heme Oxigenase-1/metabolismo , Células Hep G2 , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas Nucleares/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes
7.
Toxicol Rep ; 4: 342-347, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959658

RESUMO

Diglycolic acid (DGA) is present in trace amounts in our food supply and is classified as an indirect food additive linked with the primary GRAS food additive carboxymethyl cellulose (CMC). Carboxymethyl starches are used as a filler/binder excipient in dietary supplement tablets and a thickening ingredient in many other processed foods. We sought to utilize the human proximal tubule HK-2 cell line as an in vitro cellular model system to evaluate its acute nephrotoxicity of DGA. We found that DGA was indeed toxic to HK-2 cells in all in vitro assays in our study, including a highly sensitive Luminex assay that measures levels of an in vitro biomarker of kidney-specific toxicity, Kidney Injury Molecule 1 (KIM-1). Interestingly, in vitro KIM-1 levels also correlated with in vivo KIM-1 levels in urine collected from rats treated with DGA by daily oral gavage. The use of in vitro and in vivo models towards understanding the effectiveness of an established in vitro system to predict in vivo outcomes would be particularly useful in rapidly screening compounds that are suspected to be unsafe to consumers. The merit of the HK-2 cell model in predicting human toxicity and accelerating the process of food toxicant screening would be especially important for regulatory purposes. Overall, our study not only revealed the value of HK-2 in vitro cell model for nephrotoxicity evaluation, but also uncovered some of the mechanistic aspects of the human proximal tubule injury that DGA may cause.

8.
J Toxicol ; 2016: 9794570, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703475

RESUMO

A recent surge in the use of dietary supplements, including herbal remedies, necessitates investigations into their safety profiles. "Dream herb," Calea zacatechichi, has long been used in traditional folk medicine for a variety of purposes and is currently being marketed in the US for medicinal purposes, including diabetes treatment. Despite the inherent vulnerability of the renal system to xenobiotic toxicity, there is a lack of safety studies on the nephrotoxic potential of this herb. Additionally, the high frequency of diabetes-associated kidney disease makes safety screening of C. zacatechichi for safety especially important. We exposed human proximal tubule HK-2 cells to increasing doses of this herb alongside known toxicant and protectant control compounds to examine potential toxicity effects of C. zacatechichi relative to control compounds. We evaluated both cellular and mitochondrial functional changes related to toxicity of this dietary supplement and found that even at low doses evidence of cellular toxicity was significant. Moreover, these findings correlated with significantly elevated levels of nephrotoxicity biomarkers, lending further support for the need to further scrutinize the safety of this herbal dietary supplement.

9.
J Womens Health (Larchmt) ; 25(3): 222-34, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26871618

RESUMO

The U.S. Food and Drug Administration Office of Women's Health (FDA OWH) has supported women's health research for ∼20 years, funding more than 300 studies on women's health issues, including research on diseases/conditions that disproportionately affect women in addition to the evaluation of sex differences in the performance of and response to medical products. These important women's health issues are studied from a regulatory perspective, with a focus on improving and optimizing medical product development and the evaluation of product safety and efficacy in women. These findings have influenced industry direction, labeling, product discontinuation, safety notices, and clinical practice. In addition, OWH-funded research has addressed gaps in the knowledge about diseases and medical conditions that impact women across the life span such as cardiovascular disease, pregnancy, menopause, osteoporosis, and the safe use of numerous medical products.


Assuntos
Política de Saúde , Ciência , United States Food and Drug Administration , Saúde da Mulher , Feminino , Política de Saúde/tendências , Humanos , Formulação de Políticas , Gravidez , Estados Unidos
10.
Toxicol Rep ; 3: 15-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28959522

RESUMO

Adhatoda zeylanica is a dietary supplement ingredient present in several types of dietary supplements, including weight loss, respiratory relief, and immune regulating products. Due to its reported wide range of uses in folk medicine, it was hypothesized that it may have the potential to target multiple organs and lead to a range of toxicity features. As a preliminary evaluation of the safety of this herbal ingredient, an investigation into its effects on the kidney was sought. An in vitro study of its potential nephrotoxicity using the HK-2 human proximal tubule cell line in a variety of functional indicators was performed to capture both general forms of cellular toxicity as well as ones that are specific to proximal tubules. A. zeylanica was only capable of inducing detrimental short-term toxicity to HK-2 cells at relatively high treatment concentrations when exposed directly to the cells. The lack of acute and potent toxicity of A. zeylanica under our experimental conditions calls for further studies to better define its toxicant threshold and establish safe dosage levels.

11.
Cell Biol Toxicol ; 31(4-5): 221-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26377104

RESUMO

A human hepatoma cell line (HuH-7) was evaluated as a metabolically competent cell model to investigate cytochrome P450 3A4 (CYP3A4) inhibition, induction, and hepatotoxicity. First, CYP3A4 gene expression and activity were determined in HuH-7 cells under three culture conditions: 1-week culture, 3-week culture, or 1 % dimethyl sulfoxide (DMSO) treatment. HuH-7 cells treated with DMSO for 2 weeks after confluence expressed the highest CYP3A4 gene expression and activity compared to the other two culture conditions. Furthermore, CYP3A4 activity in DMSO-treated HuH-7 cells was compared to that in a human hepatoma cell line (HepG2/C3A) and human bipotent progenitor cell line (HepaRG), which yielded the following ranking: HepaRG > DMSO-treated HuH-7 >> HepG2/C3A cells. The effects of three known CYP3A4 inhibitors were evaluated using DMSO-treated HuH-7 cells. CYP3A4 enzyme inhibition in HuH-7 cells was further compared to human recombinant CYP3A4, indicating similar potency for reversible inhibitors (IC 50 within 2.5-fold), but different potency for the irreversible inhibitor. Next, induction of CYP3A4 activity was compared between DMSO-treated HuH-7 and HepaRG cells using two known inducers. DMSO-treated HuH-7 cells yielded minimal CYP3A4 induction compared to that in the HepaRG cells after 48-h treatments. Finally, the cytotoxicity of five known hepatotoxicants was evaluated in DMSO-treated HuH-7, HepG2/C3A, and HepaRG cells, and significant differences in cytotoxic sensitivity were observed. Overall, DMSO-treated HuH-7 cells are a valuable model for medium- or high-throughput screening of chemicals for CYP3A4 inhibition and hepatotoxicity.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia , Dimetil Sulfóxido/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Testes de Toxicidade/métodos , Carcinoma Hepatocelular/enzimologia , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/biossíntese , Citocromo P-450 CYP3A/genética , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia
12.
Food Chem Toxicol ; 78: 207-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25684415

RESUMO

Some dietary supplements may contain cardiac stimulants and potential cardiotoxins. In vitro studies may identify ingredients of concern. A beating human cardiomyocyte cell line was used to evaluate cellular effects following phenylethylamine (PEA), higenamine, ephedrine or caffeine treatment. PEA and higenamine exposure levels simulated published blood levels in humans or animals after intravenous administration. Ephedrine and caffeine levels approximated published blood levels following human oral intake. At low or midrange levels, each chemical was examined plus or minus 50 µM caffeine, simulating human blood levels reported after consumption of caffeine-enriched dietary supplements. To measure beats per minute (BPM), peak width, etc., rhythmic rise and fall in intracellular calcium levels following 30 min of treatment was examined. Higenamine 31.3 ng/ml or 313 ng/ml significantly increased BPM in an escalating manner. PEA increased BPM at 0.8 and 8 µg/ml, while 80 µg/ml PEA reduced BPM and widened peaks. Ephedrine produced a significant BPM dose response from 0.5 to 5.0 µM. Caffeine increased BPM only at a toxic level of 250 µM. Adding caffeine to PEA or higenamine but not ephedrine further increased BPM. These in vitro results suggest that additional testing may be warranted in vivo to further evaluate these effects.


Assuntos
Alcaloides/toxicidade , Cafeína/toxicidade , Suplementos Nutricionais/toxicidade , Efedrina/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Fenetilaminas/toxicidade , Tetra-Hidroisoquinolinas/toxicidade , Animais , Cardiotônicos/toxicidade , Cardiotoxicidade/patologia , Células Cultivadas , Coração/efeitos dos fármacos , Humanos , Ratos , Testes de Toxicidade
13.
Cell Biol Toxicol ; 31(6): 285-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26838987

RESUMO

Rauwolfia serpentina (or Snake root plant) is a botanical dietary supplement marketed in the USA for maintaining blood pressure. Very few studies have addressed the safety of this herb, despite its wide availability to consumers. Its reported pleiotropic effects underscore the necessity for evaluating its safety. We used a human kidney cell line to investigate the possible negative effects of R. serpentina on the renal system in vitro, with a specific focus on the renal proximal tubules. We evaluated cellular and mitochondrial toxicity, along with a variety of other kidney-specific toxicology biomarkers. We found that R. serpentina was capable of producing highly detrimental effects in our in vitro renal cell system. These results suggest more studies are needed to investigate the safety of this dietary supplement in both kidney and other target organ systems.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rauwolfia/química , Espécies Reativas de Oxigênio/agonistas , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cistatina C/genética , Cistatina C/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Ácido Valproico/farmacologia , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo
14.
Toxicol In Vitro ; 28(3): 403-10, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24373881

RESUMO

Interactions among monoamine oxidase (MAO) inhibitors in drugs, botanicals, and dietary supplements may lead to unpredictable neurochemical dysfunction due to excessive inhibition or therapeutic invalidation. Often recombinant MAO or brain tissue homogenates have been used to evaluate MAO inhibitors such as the ß-carboline alkaloids (harmane, harmine, harmaline, and harmalol). However, there is a lack of cellular systems for evaluation of MAO activity, which represents a more advanced in vitro model compared to recombinant enzymes or tissue lysates. Using kynuramine assays, intracellular MAO inhibition by ß-carbolines was measured in PC12 (rat pheochromocytoma), MH1C1 (rat liver), and HuH-7 (human liver) cell lines, which were compared with human recombinant MAO and cell lysates. ß-Carbolines (1 µM, 90 min incubations) inhibited MAO by 40-99% in live PC12 cells where MAO A was the active isoform, and <12% in HuH-7 and MH1C1 cells where MAO B was primarily active. The combination index (CI), which serves as a quantitative indicator of pharmacological interactions, was determined for harmaline/harmine (CI, 1.01-1.25) and methylene blue/harmine (CI, 0.74-1.07) in PC12 cells. Overall, this study illustrates applications of cell-based in vitro assay platforms to gain a comprehensive understanding of intracellular MAO inhibitors and their interactions.


Assuntos
Carbolinas/farmacologia , Modelos Biológicos , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/efeitos dos fármacos , Alcaloides/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Monoaminoxidase/metabolismo , Células PC12 , Ratos , Especificidade da Espécie
15.
J Steroid Biochem Mol Biol ; 138: 206-13, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23770322

RESUMO

The inflammatory tissue microenvironment can be an active promoter in preneoplastic cancer lesions. Altered steroid hormone metabolism as induced by the inflammatory microenvironment may contribute to epithelial cancer progression. Dehydroepiandrosterone sulfate (DHEAS) is the most abundant endogenous steroid hormone present in human serum and can be metabolized to DHEA, androgens and/or estrogens in peripheral tissues. We have previously reported that TGFß1-induced reactive prostate stromal cells increase DHEA metabolism to active androgens and alter prostate cancer cell gene expression. While much of the focus on mechanisms of prostate cancer and steroid metabolism is in the epithelial cancer cells, this study focuses on TGFß1-induced effects on DHEA metabolic pathways and enzymes in human prostate stromal cells. In DHEA-treated primary prostate stromal cells, TGFß1 produced time- and dose-dependent increases in metabolism of DHEA to androstenedione and testosterone. Also TGFß1-treated prostate stromal cells exhibited changes in the gene expression of enzymes involved in steroid metabolism including up-regulation of 3ß hydroxysteroid dehydrogenase (HSD), and down-regulation of 17ßHSD5, and 17ßHSD2. These studies suggest that reactive prostate stroma and the inflammatory microenvironment may contribute to altered steroid metabolism and increased intratumoral androgens.


Assuntos
Hidroxiesteroide Desidrogenases/metabolismo , Próstata/metabolismo , Células Estromais/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , 17-Hidroxiesteroide Desidrogenases/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Androstenodiona/metabolismo , Linhagem Celular Tumoral , Desidroepiandrosterona/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células Estromais/efeitos dos fármacos , Testosterona/metabolismo
16.
Vet Immunol Immunopathol ; 148(3-4): 236-42, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22648045

RESUMO

Non-steroidal anti-inflammatory drugs (NSAID) are a family of chemicals that function to reduce pain, fever, and inflammation, and they are commonly used in people and animals for this purpose. Currently there are no NSAIDs approved for the management of inflammation in swine due to a lack of validated animal models and suitable biomarkers to assess efficacy. A previous in vitro study examining biomarkers of inflammation identified fourteen genes that were significantly altered in response to Escherichia coli lipopolysaccharide (LPS)-induced inflammation. In the present study, five of those fourteen genes were tested in vivo to determine if the same effects observed in vitro were also observed in vivo. Plasma levels of prostaglandin E(2) (PGE(2)), an essential mediator of fever and inflammation, were also determined. Two groups of swine were stimulated with LPS with the second group also treated with flunixin meglumine. Blood was collected at 0, 1, 3, 6, 8, 24, and 48 h post LPS-stimulation. The RNA was extracted from the blood and quantitative real-time-PCR (qRT-PCR) was utilized to determine the expression patterns of CD1, CD4, serum amyloid A2 (SAA2), Caspase 1, and monocyte chemoattractant protein 1 (MCP-1). The LPS-stimulated animals demonstrated a statistically significant alteration in expression of SAA2 and CD1 at 3h post-stimulation. Flunixin meglumine treated animals' demonstrated reduced expression of CD1 in comparison to the LPS-stimulated swine at 24 and 48 h post LPS-stimulation. Flunixin meglumine treated animals exhibited reduced expression of SAA2 at 48 h post-stimulation compared to LPS-stimulated swine. Swine treated with LPS demonstrated statistically significant increases in plasma PGE(2) at 1h post-stimulation. Swine treated with flunixin meglumine had no increase in plasma PGE(2) levels at any time. These results demonstrate that PGE(2) production, along with two out of five genes (SAA2 and CD1) have the potential to serve as early biomarkers of inflammation as well as indicators of NSAID efficacy.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Clonixina/análogos & derivados , Inflamação/veterinária , Doenças dos Suínos/sangue , Animais , Antígenos CD1/sangue , Biomarcadores/sangue , Antígenos CD4/sangue , Caspase 1/sangue , Quimiocina CCL2/sangue , Clonixina/farmacologia , Dinoprostona/sangue , Ensaio de Imunoadsorção Enzimática/veterinária , Inflamação/sangue , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Masculino , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Proteína Amiloide A Sérica/análise , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/imunologia , Tromboxano B2/sangue
17.
Food Chem Toxicol ; 50(5): 1653-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22381260

RESUMO

Traditional toxicological methods that utilize only single pure compounds may not accurately predict risks from substances with multiple chemical constituents. A complementary approach to conventional methodologies includes in vitro systems that assess toxicity of chemical mixtures and identify components that may adversely impact biological processes. Compared to animal models, in vitro assays are inexpensive, rapid, and reduce and refine related animal testing. We utilized HepG2/C3A cells as a hepatotoxicity screening model to evaluate the cytotoxic and metabolic effects of three commercially available oil dispersants, Corexit EC9500A and EC9527A and ZI-400. The surfactant DOSS, a primary active constituent of the Corexit dispersants, was also evaluated. Biologically relevant endpoints were measured including cell viability, oxidative stress, and mitochondrial activity. Significant increases in cytotoxicity were observed with Corexit dispersants (LC(50)∼250 ppm), whereas ZI-400 was moderately cytotoxic (LC(50) >>400 ppm). Each dispersant caused an accumulation of reactive oxygen species and altered mitochondrial activity and other cellular processes. Generally, DOSS made notable contributions to the effects of EC9500A and EC9527A, however, they were observed at concentrations higher than those used in most consumer products. Overall, this system may represent a valuable complementary tool for predicting the toxicity of complex mixtures.


Assuntos
Misturas Complexas , Testes de Toxicidade , Linhagem Celular , Citocromo P-450 CYP1A1/metabolismo , Humanos , Técnicas In Vitro , Potenciais da Membrana , Mitocôndrias , Estresse Oxidativo
18.
J Nutr ; 140(12): 2104-15, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20980656

RESUMO

Food intake, physical activity (PA), and genetic makeup each affect health and each factor influences the impact of the other 2 factors. Nutrigenomics describes interactions between genes and environment. Knowledge about the interplay between environment and genetics would be improved if experimental designs included measures of nutrient intake and PA. Lack of familiarity about how to analyze environmental variables and ease of access to tools and measurement instruments are 2 deterrents to these combined studies. This article describes the state of the art for measuring food intake and PA to encourage researchers to make their tools better known and more available to workers in other fields. Information presented was discussed during a workshop on this topic sponsored by the USDA, NIH, and FDA in the spring of 2009.


Assuntos
Exercício Físico , Internet , Estado Nutricional , Software , Humanos , Medicina de Precisão
19.
J Appl Toxicol ; 30(6): 566-73, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20809545

RESUMO

The present study was undertaken to assess, in vitro, the hepatotoxic potential of the food-borne mycotoxin, deoxynivalenol (DON), using rat (Clone9 and MH1C1), mouse (NBL CL2) and human (WRL68 and HepG2) liver cells in culture. The cells were treated with DON for 24 h at 37 degrees C in 5% CO(2) at concentrations of 0-25 microg ml(-1). Following the treatment period, the cells were assayed for biochemical markers of hepatotoxicity that included three independent cytotoxicity assays, oxidative stress and mitochondrial dysfunction. Concentration-dependent cytotoxicity of DON was observed in each of the five different liver cells derived from three different species (rat, mouse and human) over the entire concentration range studied, beginning at 0.1 microg ml(-1). At these concentrations DON did not induce a biologically significant increase in oxidative stress in these liver cells, and showed a significant decrease in the mitochondrial function only in the rat liver MH1C1 cells compared with the control. The results of this in vitro study suggest that DON is a potential hepatotoxin for the rat, mouse and human liver cells in the concentration range tested in this study. The liver cells used in this study showed distinct endpoint-sensitivity to DON related to the species.


Assuntos
Fígado/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doenças Transmitidas por Alimentos/etiologia , Humanos , Fígado/citologia , Fígado/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Especificidade da Espécie
20.
Int J Food Microbiol ; 132(1): 67-72, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19375809

RESUMO

The objective of this study was to investigate the effect of uptake of different commonly consumed long chain fatty acids on superoxide (O(2)(-)), nitric oxide (NO) production, and ability to kill Salmonella enterica serotype typhimurium (S. typhimurium) by chicken macrophages (HD11 cells). All the fatty acids were taken up by HD11 cells with stearic acid uptake higher than polyunsaturated fatty acids. Uptake of green fluorescent protein-labeled bacteria and the viability of HD11 cells (measured by flow cytometry) was not affected by any of the fatty acids tested. Bacterial clearance (measured by the plating of sorted viable infected cells) was significantly higher with n-3 fatty acids alpha-linolenic acid (ALA) and docosahexanoic acid (DHA). However, stearic acid (SA) and the n-6 fatty acid, arachidonic acid (ARA) did not influence S. typhimurium killing by HD11 cells. The improved S. typhimurium clearance by ALA and DHA was not associated with increased NO or O(2)(-) production by HD11 cells. These results suggest a role for n-3 polyunsaturated fatty acids in Salmonella clearance by chicken macrophages however in vivo studies are essential to confirm their efficacy in controlling Salmonella infection in chickens and contamination in shell eggs.


Assuntos
Galinhas , Ácidos Graxos/farmacologia , Macrófagos/microbiologia , Óxido Nítrico/biossíntese , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella typhimurium/imunologia , Superóxidos/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/imunologia , Ácidos Graxos/farmacocinética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/imunologia , Doenças das Aves Domésticas/imunologia , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/imunologia , Superóxidos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA