Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36674271

RESUMO

Hydrochemistry and strontium isotope data were analysed in water samples from the Xi River Drainage system to reveal the spatial and seasonal variations in chemical weathering, associated CO2 consumption fluxes, and their control factors. The main ions were Ca2+, Mg2+, and HCO3-, which are characteristic of a drainage system on carbonate-dominated bedrock. The dissolved loads were derived from four major end-member reservoirs: silicate, limestone, dolomite, and atmosphere. The silicate weathering rates (SWRs) increased downstream from 0.03 t/km2/year to 2.37 t/km2/year. The carbonate weathering rates (CWRs) increased from 2.14 t/km2/year in the upper reaches, to 32.65 t/km2/year in the middle reaches, and then decreased to 23.20 t/km2/year in the lower reaches. The SWR values were 281.38 and 113.65 kg/km2/month during the high- and low-water periods, respectively. The CWR values were 2456.72 and 1409.32 kg/km2/month, respectively. The limestone weathering rates were 2042.74 and 1222.38 kg/km2/month, respectively. The dolomite weathering rates were 413.98 and 186.94 kg/km2/month, respectively. Spatial and seasonal variations in chemical weathering were controlled mainly by lithology, vegetation, and climate (temperature, water discharge, and precipitation). The CO2 consumption flux by chemical weathering was estimated at 189.79 × 109 mol/year, with 156.37 × 109 and 33.42 × 109 mol/year for carbonate and silicate weathering, respectively. The CO2 fluxes by chemical weathering are substantially influenced by sulfuric acid in the system. The CO2 flux produced by sulfuric acid weathering was estimated at 30.00 × 109 mol/year in the basin. Therefore, the Xi River Basin is a CO2 sink with a net consumption of CO2 flux of 3.42 × 109 mol/year.


Assuntos
Dióxido de Carbono , Água , Dióxido de Carbono/análise , Água/análise , Carbonato de Cálcio , China , Carbonatos/análise , Silicatos/análise , Monitoramento Ambiental
2.
Nature ; 518(7538): 228-31, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25470048

RESUMO

The manufacture of geometric engravings is generally interpreted as indicative of modern cognition and behaviour. Key questions in the debate on the origin of such behaviour are whether this innovation is restricted to Homo sapiens, and whether it has a uniquely African origin. Here we report on a fossil freshwater shell assemblage from the Hauptknochenschicht ('main bone layer') of Trinil (Java, Indonesia), the type locality of Homo erectus discovered by Eugène Dubois in 1891 (refs 2 and 3). In the Dubois collection (in the Naturalis museum, Leiden, The Netherlands) we found evidence for freshwater shellfish consumption by hominins, one unambiguous shell tool, and a shell with a geometric engraving. We dated sediment contained in the shells with (40)Ar/(39)Ar and luminescence dating methods, obtaining a maximum age of 0.54 ± 0.10 million years and a minimum age of 0.43 ± 0.05 million years. This implies that the Trinil Hauptknochenschicht is younger than previously estimated. Together, our data indicate that the engraving was made by Homo erectus, and that it is considerably older than the oldest geometric engravings described so far. Although it is at present not possible to assess the function or meaning of the engraved shell, this discovery suggests that engraving abstract patterns was in the realm of Asian Homo erectus cognition and neuromotor control.


Assuntos
Exoesqueleto , Gravuras e Gravação/história , Hominidae , Comportamento de Utilização de Ferramentas , Animais , Fósseis , História Antiga , Indonésia , Moluscos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA