Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(9): 1811-1820, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39210047

RESUMO

Large-scale sequencing has enabled unparalleled opportunities to investigate the role of rare coding variation in human phenotypic variability. Here, we present a pan-ancestry analysis of sequencing data from three large biobanks, including the All of Us research program. Using mixed-effects models, we performed gene-based rare variant testing for 601 diseases across 748,879 individuals, including 155,236 with ancestry dissimilar to European. We identified 363 significant associations, which highlighted core genes for the human disease phenome and identified potential novel associations, including UBR3 for cardiometabolic disease and YLPM1 for psychiatric disease. Pan-ancestry burden testing represented an inclusive and useful approach for discovery in diverse datasets, although we also highlight the importance of ancestry-specific sensitivity analyses in this setting. Finally, we found that effect sizes for rare protein-disrupting variants were concordant between samples similar to European ancestry and other genetic ancestries (ßDeming = 0.7-1.0). Our results have implications for multi-ancestry and cross-biobank approaches in sequencing association studies for human disease.


Assuntos
Bancos de Espécimes Biológicos , Humanos , Variação Genética , Predisposição Genética para Doença , População Branca/genética , Doença/genética , Estudo de Associação Genômica Ampla
2.
JACC Clin Electrophysiol ; 9(7 Pt 2): 1097-1107, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227342

RESUMO

BACKGROUND: Perpetuation of atrial fibrillation (AF) is rooted in derailment of molecular proteostasis pathways that cause electrical conduction disorders that drive AF. Emerging evidence indicates a role for long noncoding RNAs (lncRNAs) in the pathophysiology of cardiac diseases, including AF. OBJECTIVES: In the present study, the authors explored the association between 3 cardiac lncRNAs and the degree of electropathology. METHODS: Patients had paroxysmal AF (ParAF) (n = 59), persistent AF (PerAF) (n = 56), or normal sinus rhythm without a history of AF (SR) (n = 70). The relative expression levels of urothelial carcinoma-associated 1 (UCA1), OXCT1-AS1 (SARRAH), and the mitochondrial lncRNA uc022bqs.q (LIPCAR) were measured by means of quantitative reverse-transcription polymerase chain reaction in the right atrial appendage (RAA) or serum (or both). A selection of the patients was subjected to high-resolution epicardial mapping to evaluate electrophysiologic features during SR. RESULTS: The expression levels of SARRAH and LIPCAR were decreased in RAAs of all AF patients compared with SR. Also, in RAAs, UCA1 levels significantly correlated with the percentage of conduction block and delay, and inversely with conduction velocity, indicating that UCA1 levels in RAA reflect the degree of electrophysiologic disorders. Moreover, in serum samples, SARRAH and UCA1 levels were increased in the total AF group and ParAF patients compared with SR. CONCLUSIONS: LncRNAs SARRAH and LIPCAR are reduced in RAA of AF patients, and UCA1 levels correlate with electrophysiologic conduction abnormalities. Thus, RAA UCA1 levels may aid staging of electropathology severity and act as a patient-tailored bioelectrical fingerprint.


Assuntos
Apêndice Atrial , Fibrilação Atrial , Carcinoma de Células de Transição , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , Fibrilação Atrial/patologia , Carcinoma de Células de Transição/complicações , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/patologia , Doença do Sistema de Condução Cardíaco , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Bexiga Urinária/complicações , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
3.
Cells ; 11(3)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35159226

RESUMO

The most common clinical tachyarrhythmia, atrial fibrillation (AF), is present in 1-2% of the population. Although common risk factors, including hypertension, diabetes, and obesity, frequently underlie AF onset, it has been recognized that in 15% of the AF population, AF is familial. In these families, genome and exome sequencing techniques identified variants in the non-coding genome (i.e., variant regulatory elements), genes encoding ion channels, as well as genes encoding cytoskeletal (-associated) proteins. Cytoskeletal protein variants include variants in desmin, lamin A/C, titin, myosin heavy and light chain, junctophilin, nucleoporin, nesprin, and filamin C. These cytoskeletal protein variants have a strong association with the development of cardiomyopathy. Interestingly, AF onset is often represented as the initial manifestation of cardiac disease, sometimes even preceding cardiomyopathy by several years. Although emerging research findings reveal cytoskeletal protein variants to disrupt the cardiomyocyte structure and trigger DNA damage, exploration of the pathophysiological mechanisms of genetic AF is still in its infancy. In this review, we provide an overview of cytoskeletal (-associated) gene variants that relate to genetic AF and highlight potential pathophysiological pathways that drive this arrhythmia.


Assuntos
Fibrilação Atrial , Hipertensão , Fibrilação Atrial/genética , Proteínas do Citoesqueleto/genética , Humanos , Sequenciamento do Exoma
4.
Cells ; 11(3)2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35159236

RESUMO

BACKGROUND: The current paradigm is that fibrosis promotes electrophysiological disorders and drives atrial fibrillation (AF). In this current study, we investigated the relation between the degree of fibrosis in human atrial tissue samples of controls and patients in various stages of AF and the degree of electrophysiological abnormalities. METHODS: The degree of fibrosis was measured in the atrial tissue and serum of patients in various stages of AF and the controls. Hereto, picrosirius and H&E staining were performed to quantify degree of total, endo-perimysial fibrosis, and cardiomyocyte diameter. Western blot quantified fibrosis markers: neural cell adhesion molecule, tissue inhibitor of metalloproteinase, lysyl oxidase, and α-smooth muscle actin. In serum, the ratio carboxyl-terminal telopeptide of collagen/matrix-metalloproteinase1 was determined. High-resolution epicardial mapping evaluated low-voltage areas and conduction abnormalities. RESULTS: No significant differences were observed in the degree of fibrosis between the groups. Finally, no significant correlation-absolute nor spatial-was observed between all electrophysiological parameters and histological fibrosis markers. CONCLUSIONS: No differences in the degree of fibrosis were observed in patients from various stages of AF compared to the controls. Moreover, electrophysiological abnormalities did not correlate with any of the fibrosis markers. The findings indicate that fibrosis is not the hallmark of structural remodeling in AF.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/patologia , Biomarcadores/metabolismo , Colágeno/metabolismo , Fibrose , Átrios do Coração/metabolismo , Humanos
5.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445167

RESUMO

Atrial fibrillation (AF) is the most prevalent and progressive cardiac arrhythmia worldwide and is associated with serious complications such as heart failure and ischemic stroke. Current treatment modalities attenuate AF symptoms and are only moderately effective in halting the arrhythmia. Therefore, there is an urgent need to dissect molecular mechanisms that drive AF. As AF is characterized by a rapid atrial activation rate, which requires a high energy metabolism, a role of mitochondrial dysfunction in AF pathophysiology is plausible. It is well known that mitochondria play a central role in cardiomyocyte function, as they produce energy to support the mechanical and electrical function of the heart. Details on the molecular mechanisms underlying mitochondrial dysfunction are increasingly being uncovered as a contributing factor in the loss of cardiomyocyte function and AF. Considering the high prevalence of AF, investigating the role of mitochondrial impairment in AF may guide the path towards new therapeutic and diagnostic targets. In this review, the latest evidence on the role of mitochondria dysfunction in AF is presented. We highlight the key modulators of mitochondrial dysfunction that drive AF and discuss whether they represent potential targets for therapeutic interventions and diagnostics in clinical AF.


Assuntos
Fibrilação Atrial/diagnóstico , Fibrilação Atrial/patologia , Mitocôndrias Cardíacas/patologia , Animais , Fibrilação Atrial/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Metabolismo Energético , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Humanos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA