Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FASEB Bioadv ; 2(1): 5-17, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32123853

RESUMO

The tumor microenvironment strongly influences clinical outcomes of immunotherapy. By transfecting genes of relevant cytokines into tumor cells, we sought to manipulate the microenvironment so as to elicit activation of T helper type 1 (Th1) responses and the maturation of dendritic cells (DCs). Using a synthetic vehicle, the efficiency of in vivo transfection of GFP-cDNA into tumor cells was about 7.5% by intratumoral injection and about 11.5% by intravenous injection. Survival was significantly improved by both intratumoral and intravenous injection of the plasmid containing cDNA of interferon-gamma, followed by intratumoral injection of DCs presenting the tumor antigens. Also, tumor growth was inhibited by these treatments. A more significant effect on survival and tumor growth inhibition was observed following injection of the plasmid containing cDNA of CD40 ligand, which is a potent inducer of DC-maturation. Furthermore, the co-injection of both IFNγ- and CD40 ligand-encoding cDNA-plasmids, followed by DC treatment, gave rise to further marked and enhancement, including 100% survival and more than 50% complete remission. This treatment regimen elicited significant increases in mature DCs and types of cells contributing to Th1 responses, and significant decreases in immune suppressor cells in the tumor. In the spleen, the treatment significantly increased activities of tumor-specific killer and natural killer cells, but no alteration was observed in mature DCs or suppressor cells. These results indicate that transfection of these cytokine genes into tumor cells significantly alter the tumor microenvironment and improve the therapeutic results of DC-based immunotherapy.

2.
Stem Cells Dev ; 26(15): 1111-1120, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28474540

RESUMO

Extraembryonic endoderm (XEN) cells are stem cell lines derived from primitive endoderm cells of inner cell mass in blastocysts. These cells have self-renewal properties and differentiate into visceral endoderm (VE) and parietal endoderm (PE) of the yolk sac. Recently, it has been reported that XEN cells can contribute to fetal embryonic endoderm, and their unique potency has been evaluated. In this study, we have described the induction and characterization of new canine stem cell lines that closely resemble to XEN cells. These cells, which we designated canine induced XEN (ciXEN)-like cells, were induced from canine embryonic fibroblasts by introducing four transgenes. ciXEN-like cells expressed XEN markers, which could be maintained over 50 passages in N2B27 medium supplemented with inhibitors of mitogen-activated protein kinase p38 and transforming growth factor-beta 1. Our ciXEN-like cells were maintained without transgene expression and exhibited upregulated expression of VE and PE markers in feeder-free conditions. The cells differentiated from ciXEN-like cells using a coculture system showed multiple nuclei and expressed albumin protein, similar to characteristics of hepatocytes. Furthermore, these cells expressed the adult hepatocyte marker, CYP3A4. Interestingly, these cells also formed a net structure expressing the bile epithelium capillary marker, multidrug resistance-associated protein 2. Thus, we have demonstrated the induction of a new canine stem cell line, ciXEN-like cells, which could form an embryonic endodermal cell layer. Our ciXEN-like cells may be a helpful tool to study the canine embryo development and represent a promising cell source for proceeding human and canine regenerative medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Embrião de Mamíferos/citologia , Endoderma/citologia , Membranas Extraembrionárias/citologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Cães , Células Alimentadoras/citologia , Regulação da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/metabolismo , Camundongos , Células Estromais/citologia , Células Estromais/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA