Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662665

RESUMO

Snow-algae are a diverse group of extremophilic microeukaryotes found on melting polar and alpine snowfields. They play an important role in the microbial ecology of the cryosphere, and their propagation on snow and ice surfaces may in part accelerate climate-induced melting of these systems. High quality snow-algae genomes are needed for studies on their unique physiology, adaptive mechanisms and genome evolution under multiple forms of stress, including cold temperatures and intense sunlight. Here we assembled and annotated the genome of Limnomonas spitsbergensis, a cryophilic biciliate green alga originally isolated from melting snow on Svalbard, in the Arctic. The L. spitsbergensis genome assembly is based primarily on the use of PacBio long reads and secondly Illumina short reads, with an assembly size of 260.248 Mb in 124 contigs. A combination of three alternative annotation strategies were used including protein homology, RNA-seq evidence and PacBio full length transcript isoforms. The best merged set of annotations identified 18,277 protein-coding genes, which were 95.2% complete based on BUSCO analysis. We also provide the annotated mitogenome, which is a relatively large 77.942 kb circular mapping sequence containing extensive repeats. The L. spitsbergensis genome will provide a new resource for research on snow-algae adaptation, behavior and natural selection in unique, low-temperature terrestrial environments that are under threat from climate change.

2.
Microb Biotechnol ; 17(3): e14423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528784

RESUMO

Medium-chain-length α,ω-diols (mcl-diols) play an important role in polymer production, traditionally depending on energy-intensive chemical processes. Microbial cell factories offer an alternative, but conventional strains like Escherichia coli and Saccharomyces cerevisiae face challenges in mcl-diol production due to the toxicity of intermediates such as alcohols and acids. Metabolic engineering and synthetic biology enable the engineering of non-model strains for such purposes with P. putida emerging as a promising microbial platform. This study reviews the advancement in diol production using P. putida and proposes a four-module approach for the sustainable production of diols. Despite progress, challenges persist, and this study discusses current obstacles and future opportunities for leveraging P. putida as a microbial cell factory for mcl-diol production. Furthermore, this study highlights the potential of using P. putida as an efficient chassis for diol synthesis.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Biologia Sintética
3.
Int J Biol Macromol ; 262(Pt 2): 130103, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346616

RESUMO

Extraction of seaweed compounds using Deep Eutectic Solvents (DES) has shown high interest. Quantification, however, is challenging due to interactions with DES components. In this research work, three chemical separation techniques were investigated to isolate and quantify alginate from a set of choline chloride-based DES. While choline chloride served as the hydrogen bond acceptor (HBA); Urea, Ethylene Glycol, Propylene Glycol, Glycerol, Sorbitol, Xylitol and Glucose were used as hydrogen bond donors (HBD). DES containing sodium alginate were subjected to precipitation with sulfuric acid 0.2 M (pH 1.6), ethanol-water mixture (80 % v/v) and calcium chloride (1 % w/v CaCl2·2H2O). Alginate in precipitates was quantified and used to evaluate the performance of each separation technique. The highest recovery yields (51.2 ± 1.3 %) were obtained using the ethanol-water mixture followed by calcium chloride (45.7 ± 1.2 %), except for polyols (e.g. sorbitol). The lowest recovery yields were obtained with acid, with a particularly low recovery yield when urea was used as HBD (9.6 ± 1.3 %). Estimations of ManA/GulA ratios showed lower values for precipitates from DES compared to the ones obtained from water. This research shows ethanolic precipitation as a suitable method for alginate separation from the studied set of choline chloride-based DES.


Assuntos
Colina , Solventes Eutéticos Profundos , Colina/química , Solventes/química , Alginatos , Cloreto de Cálcio , Água , Etanol , Ureia/química , Sorbitol
4.
Bioengineering (Basel) ; 10(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38135982

RESUMO

Monoclonal antibodies are the workhorse of the pharmaceutical industry due to their potential to treat a variety of different diseases while providing high specificity and efficiency. As a consequence, a variety of production processes have been established within the biomanufacturing industry. However, the rapidly increasing demand for therapeutic molecules amid the recent COVID-19 pandemic demonstrated that there still is a clear need to establish novel, highly productive, and flexible production processes. Within this work, we designed a novel discontinuous process by combining two intensification strategies, thus increasing inoculation density and media exchange via a fluidized bed centrifuge, to fulfill the need for a flexible and highly productive production process for therapeutic molecules. To establish this new process, firstly, a small-scale experiment was conducted to verify synergies between both intensification strategies, followed by a process transfer towards the proof-of-concept scale. The combination of these two-process intensification measures revealed overall synergies resulting in decreased process duration (-37%) and strongly enhanced product formation (+116%) in comparison to the not-intensified standard operation. This led to an impressive threefold increase in space-time yield, while only negligible differences in product quality could be observed. Overall, this novel process not only increases the ways to react to emergency situations thanks to its flexibility and possible short development times, but also represents a possible alternative to the current established processes due to high increases in productivity, in comparison to standard fed-batch operations.

5.
Front Bioeng Biotechnol ; 11: 1211410, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456731

RESUMO

Monoclonal antibodies (mAb) are commonly manufactured by either discontinuous operations like fed-batch (FB) or continuous processes such as steady-state perfusion. Both process types comprise opposing advantages and disadvantages in areas such as plant utilization, feasible cell densities, media consumption and process monitoring effort. In this study, we show feasibility of a promising novel hybrid process strategy that combines beneficial attributes of both process formats. In detail, our strategy comprises a short duration FB, followed by a fast media exchange and cell density readjustment, marking the start of the next FB cycle. Utilizing a small-scale screening tool, we were able to identify beneficial process parameters, including FB interval duration and reinoculation cell density, that allow for multiple cycles of the outlined process in a reproducible manner. In addition, we could demonstrate scalability of the process to a 5L benchtop system, using a fluidized-bed centrifuge as scalable media exchange system. The novel process showed increased productivity (+217%) as well as longer cultivation duration, in comparison to a standard FB with a significantly lower media consumption per produced product (-50%) and a decreased need for process monitoring, in comparison to a perfusion cultivation. Further, the process revealed constant glycosylation pattern in comparison to the perfusion cultivation and has strong potential for further scale-up, due to the use of fully scalable cultivation and media exchange platforms. In summary, we have developed a novel hybrid process strategy that tackles the key challenges of current biomanufacturing of either low productivity or high media consumption, representing a new and innovative approach for future process intensification efforts.

6.
N Biotechnol ; 77: 20-29, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37348756

RESUMO

As a global regulatory mechanism, carbon catabolite repression allows bacteria and eukaryal microbes to preferentially utilize certain substrates from a mixture of carbon sources. The mechanism varies among different species. In Pseudomonas spp., it is mainly mediated by the Crc-Hfq complex which binds to the 5' region of the target mRNAs, thereby inhibiting their translation. This molecular mechanism enables P. putida to rapidly adjust and fine-tune gene expression in changing environments. Hfq is an RNA-binding protein that is ubiquitous and highly conserved in bacterial species. Considering the characteristics of Hfq, and the widespread use and rapid response of Crc-Hfq in P. putida, this complex has the potential to become a general toolbox for post-transcriptional multiplex regulation. In this study, we demonstrate for the first time that transplanting the pseudomonal catabolite repression protein, Crc, into E. coli causes multiplex gene repression. Under the control of Crc, the production of a diester and its precursors was significantly reduced. The effects of Crc introduction on cell growth in both minimal and rich media were evaluated. Two potential factors - off-target effects and Hfq-sequestration - could explain negative effects on cell growth. Simultaneous reduction of off-targeting and increased sequestration of Hfq by the introduction of the small RNA CrcZ, indicated that Hfq sequestration plays a more prominent role in the negative side-effects. This suggests that the negative growth effect can be mitigated by well-controlled expression of Hfq. This study reveals the feasibility of controlling gene expression using heterologous regulation systems.


Assuntos
Repressão Catabólica , Proteínas de Escherichia coli , Pseudomonas putida , Pseudomonas putida/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pseudomonas/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo
7.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37226528

RESUMO

Snow algae blooms often form green or red coloured patches in melting alpine and polar snowfields worldwide, yet little is known about their biology, biogeography, and species diversity. We investigated eight isolates collected from red snow in northern Norway, using a combination of morphology, 18S rRNA gene and internal transcribed spacer 2 (ITS2) genetic markers. Phylogenetic and ITS2 rRNA secondary structure analyses assigned six isolates to the species Raphidonema nivale, Deuterostichococcus epilithicus, Chloromonas reticulata, and Xanthonema bristolianum. Two novel isolates belonging to the family Stichococcaceae (ARK-S05-19) and the genus Chloromonas (ARK-S08-19) were identified as potentially new species. In laboratory cultivation, differences in the growth rate and fatty acid profiles were observed between the strains. Chlorophyta were characterized by abundant C18:3n-3 fatty-acids with increases in C18:1n-9 in the stationary phase, whilst Xanthonema (Ochrophyta) was characterized by a large proportion of C20:5n-3, with increases in C16:1n-7 in the stationary phase. In a further experiment, lipid droplet formation was studied in C. reticulata at the single-cell level using imaging flow cytometry. Our study establishes new cultures of snow algae, reveals novel data on their biodiversity and biogeography, and provides an initial characterization of physiological traits that shape natural communities and their ecophysiological properties.


Assuntos
Clorofíceas , Clorófitas , Microbiota , Filogenia , Clorófitas/genética , Noruega , Microbiota/genética , Lipídeos
8.
Sci Rep ; 13(1): 5766, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031251

RESUMO

The potential of sponge-derived chemicals for pharmaceutical applications remains largely unexploited due to limited available biomass. Although many have attempted to culture marine sponge cells in vitro to create a scalable production platform for such biopharmaceuticals, these efforts have been mostly unsuccessful. We recently showed that Geodia barretti sponge cells could divide rapidly in M1 medium. In this study we established the first continuous marine sponge cell line, originating from G. barretti. G. barretti cells cultured in OpM1 medium, a modification of M1, grew more rapidly and to a higher density than in M1. Cells in OpM1 reached 1.74 population doublings after 30 min, more than twofold higher than the already rapid growth rate of 0.74 population doublings in 30 min in M1. The maximum number of population doublings increased from 5 doublings in M1 to at least 98 doublings in OpM1. Subcultured cells could be cryopreserved and used to inoculate new cultures. With these results, we have overcome a major obstacle that has blocked the path to producing biopharmaceuticals with sponge cells at industrial scale for decades.


Assuntos
Geodia , Poríferos , Animais , Linhagem Celular , Técnicas de Cultura de Células
9.
Front Bioeng Biotechnol ; 11: 1106292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873352

RESUMO

Monoclonal antibodies (mAb) have gained enormous therapeutic application during the last decade as highly efficient and flexible tools for the treatment of various diseases. Despite this success, there remain opportunities to drive down the manufacturing costs of antibody-based therapies through cost efficiency measures. To reduce production costs, novel process intensification methods based on state-of-the-art fed-batch and perfusion have been implemented during the last few years. Building on process intensification, we demonstrate the feasibility and benefits of a novel, innovative hybrid process that combines the robustness of a fed-batch operation with the benefits of a complete media exchange enabled through a fluidized bed centrifuge (FBC). In an initial small-scale FBC-mimic screening, we investigated multiple process parameters, resulting in increased cell proliferation and an elongated viability profile. Consecutively, the most productive process scenario was transferred to the 5-L scale, further optimized and compared to a standard fed-batch process. Our data show that the novel hybrid process enables significantly higher peak cell densities (163%) and an impressive increase in mAb amount of approximately 254% while utilizing the same reactor size and process duration of the standard fed-batch operation. Furthermore, our data show comparable critical quality attributes (CQAs) between the processes and reveal scale-up possibilities and no need for extensive additional process monitoring. Therefore, this novel process intensification strategy yields strong potential for transfer into future industrial manufacturing processes.

10.
ISME J ; 17(6): 870-879, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997724

RESUMO

Photogranules are spherical aggregates formed of complex phototrophic ecosystems with potential for "aeration-free" wastewater treatment. Photogranules from a sequencing batch reactor were investigated by fluorescence microscopy, 16S/18S rRNA gene amplicon sequencing, microsensors, and stable- and radioisotope incubations to determine the granules' composition, nutrient distribution, and light, carbon, and nitrogen budgets. The photogranules were biologically and chemically stratified, with filamentous cyanobacteria arranged in discrete layers and forming a scaffold to which other organisms were attached. Oxygen, nitrate, and light gradients were also detectable. Photosynthetic activity and nitrification were both predominantly restricted to the outer 500 µm, but while photosynthesis was relatively insensitive to the oxygen and nutrient (ammonium, phosphate, acetate) concentrations tested, nitrification was highly sensitive. Oxygen was cycled internally, with oxygen produced through photosynthesis rapidly consumed by aerobic respiration and nitrification. Oxygen production and consumption were well balanced. Similarly, nitrogen was cycled through paired nitrification and denitrification, and carbon was exchanged through photosynthesis and respiration. Our findings highlight that photogranules are complete, complex ecosystems with multiple linked nutrient cycles and will aid engineering decisions in photogranular wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Ecossistema , Reatores Biológicos , Nitrificação , Oxigênio , Nitrogênio , Carbono , Desnitrificação , Esgotos
11.
Water Res ; 235: 119748, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36944303

RESUMO

Photogranules are a novel wastewater treatment technology that can utilize the sun's energy to treat water with lower energy input and have great potential for nutrient recovery applications. They have been proven to efficiently remove nitrogen and carbon but show lower conversion rates for phosphorus compared to established treatment systems, such as aerobic granular sludge. In this study, we successfully introduced polyphosphate accumulating organisms (PAOs) to an established photogranular culture. We operated photobioreactors in sequencing batch mode with six cycles per day and alternating anaerobic (dark) and aerobic (light) phases. We were able to increase phosphorus removal/recovery by 6 times from 5.4 to 30 mg/L/d while maintaining similar nitrogen and carbon removal compared to photogranules without PAOs. To maintain PAOs activity, alternating anaerobic feast and aerobic famine conditions were required. In future applications, where aerobic conditions are dependent on in-situ oxygenation via photosynthesis, the process will rely on sunlight availability. Therefore, we investigated the feasibility of the process under diurnal cycles with a 12-h anaerobic phase during nighttime and six short cycles during the 12 h daytime. The 12-h anaerobic phase had no adverse effect on the PAOs and phototrophs. Due to the extension of one anaerobic phase to 12 h the six aerobic phases were shortened by 47% and consequently decreased the light hours per day. This resulted in a decrease of phototrophs, which reduced nitrogen removal and biomass productivity up to 30%. Finally, we discuss and suggest strategies to apply PAO-enriched photogranules at large-scale.


Assuntos
Fósforo , Polifosfatos , Reatores Biológicos , Esgotos , Fotobiorreatores , Carbono , Nitrogênio
12.
Front Plant Sci ; 14: 1078998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844089

RESUMO

After light, temperature is the most relevant environmental parameter in outdoors cultivation of microalgae. Suboptimal and supraoptimal temperatures negatively impact growth and photosynthetic performance with a subsequent effect on lipid accumulation. It is generally recognised that lower temperatures trigger an increase in fatty acid desaturation while higher temperatures trigger the opposite reaction. The effect of temperature on lipid classes has been less studied in microalgae and in certain cases, the effect of light cannot be completely excluded. In this research, the effect of temperature on growth, photosynthesis, and lipid class accumulation in Nannochloropsis oceanica was studied at a fixed light gradient with a constant incident light intensity (670 µmol m-2 s-1). A turbidostat approach was used to achieve temperature acclimated cultures of Nannochloropsis oceanica. Optimal growth was found at 25-29°C, while growth was completely arrested at temperatures higher than 31°C and lower than 9°C. Acclimation to low temperatures triggered a decrease in absorption cross section and photosynthesis rates with a tipping point at 17°C. Reduced light absorption was correlated with a decrease in content of the plastid lipids monogalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol. The increase of diacylglyceryltrimethylhomo-serine content at lower temperatures indicated a relevant role of this lipid class in temperature tolerance. Triacylglycerol content increased at 17°C and decreased at 9°C emphasising a metabolic switch in stress response. Total and polar eicosapentaenoic acid content remained constant at 3.5 and 2.4% w/w, despite the fluctuating lipid contents. Results show an extensive mobilisation of eicosapentaenoic acid between polar lipids classes at 9°C to ensure cell survival under critical conditions.

13.
ACS Sustain Chem Eng ; 11(5): 1752-1762, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36778521

RESUMO

Macroalgae are a promising feedstock for several industries due to their large content of proteins and carbohydrates and the high biomass productivities. A novel extraction and fractionation concept based on ionic liquids (ILs) using Ulva lactuca as model organism is presented. Biomolecules are first extracted by means of IL-assisted mechanical shear, followed by two-phase partitioning or ultrafiltration in order to fractionate proteins and carbohydrates and to recover the IL. Ethyl methyl imidazolium dibutyl phosphate ([Emim][DBP]) is strongly selective to proteins, leading to extraction yields up to 80.4% for proteins and 30.7% for carbohydrates. The complete process, including extraction and ultrafiltration, allowed protein recovery of up to 64.6 and 15.4% of the carbohydrates in the retentate phase, while a maximum of 85.7% of the IL was recovered in the permeate phase. The native structure of the extracted proteins was preserved during extraction and fractionation as shown by gel electrophoresis. Selective extraction of proteins from macroalgae under non-denaturing conditions using ILs followed by the recovery of IL using ultrafiltration is for the first time reported. The proposed extraction-fractionation approach is simple and can be potentially applied for the biorefinery of macroalgae at the commercial scale.

14.
Biotechnol Bioeng ; 120(5): 1303-1315, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779371

RESUMO

Wastewater characteristics can vary significantly, and in some municipal wastewaters the N:P ratio is as low as 5 resulting in nitrogen-limiting conditions. In this study, the microbial community, function, and morphology of photogranules under nitrogen-replete (N+) and limiting (N-) conditions was assessed in sequencing batch reactors. Photogranules under N- condition were nitrogen deprived 2/3 of a batch cycle duration. Surprisingly, this nitrogen limitation had no adverse effect on biomass productivity. Moreover, phosphorus and chemical oxygen demand removal were similar to their removal under N+ conditions. Although performance was similar, the difference in granule morphology was obvious. While N+ photogranules were dense and structurally confined, N- photogranules showed loose structures with occasional voids. Microbial community analysis revealed high abundance of cyanobacteria capable of N2 -fixation. These were higher at N- (38%) than N+ (29%) treatments, showing that photogranules could adjust and maintain treatment performance and high biomass productivity by means of N2 -fixation.


Assuntos
Cianobactérias , Águas Residuárias , Nitrogênio , Biomassa , Fósforo , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos/métodos
15.
Microb Cell Fact ; 22(1): 12, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647076

RESUMO

Microalgae are considered a suitable production platform for high-value lipids and oleochemicals. Several species including Nannochloropsis oceanica produce large amounts of essential [Formula: see text]-3 polyunsaturated fatty acids (PUFAs) which are integral components of food and feed and have been associated with health-promoting effects. N. oceanica can further accumulate high contents of non-polar lipids with chemical properties that render them a potential replacement for plant oils such as palm oil. However, biomass and lipid productivities obtained with microalgae need to be improved to reach commercial feasibility. Genetic engineering can improve biomass and lipid productivities, for instance by increasing carbon flux to lipids. Here, we report the overexpression of glycerol-3-phosphate acyltransferase (GPAT) in N. oceanica during favorable growth conditions as a strategy to increase non-polar lipid content. Transformants overproducing either an endogenous (NoGPAT) or a heterologous (Acutodesmus obliquus GPAT) GPAT enzyme targeted to the endoplasmic reticulum had up to 42% and 51% increased non-polar lipid contents, respectively, compared to the wild type. Biomass productivities of transformant strains were not substantially impaired, resulting in lipid productivities that were increased by up to 37% and 42% for NoGPAT and AoGPAT transformants, respectively. When exposed to nutrient stress, transformants and wild type had similar lipid contents, suggesting that GPAT enzyme exerts strong flux control on lipid synthesis in N. oceanica under favorable growth conditions. NoGPAT transformants further accumulated PUFAs in non-polar lipids, reaching a total of 6.8% PUFAs per biomass, an increase of 24% relative to the wild type. Overall, our results indicate that GPAT is an interesting target for engineering of lipid metabolism in microalgae, in order to improve non-polar lipid and PUFAs accumulation in microalgae.


Assuntos
Microalgas , Estramenópilas , Glicerol/metabolismo , Óleos/metabolismo , Engenharia Genética , Glicerol-3-Fosfato O-Aciltransferase/genética , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Estramenópilas/genética , Microalgas/genética , Microalgas/metabolismo , Biomassa , Fosfatos/metabolismo
16.
Trends Biotechnol ; 41(3): 452-471, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707271

RESUMO

The urge for food security and sustainability has advanced the field of microalgal biotechnology. Microalgae are microorganisms able to grow using (sun)light, fertilizers, sugars, CO2, and seawater. They have high potential as a feedstock for food, feed, energy, and chemicals. Microalgae grow faster and have higher areal productivity than plant crops, without competing for agricultural land and with 100% efficiency uptake of fertilizers. In comparison with bacterial, fungal, and yeast single-cell protein production, based on hydrogen or sugar, microalgae show higher land-use efficiency. New insights are provided regarding the potential of microalgae replacing soy protein, fish oil, and palm oil and being used as cell factories in modern industrial biotechnology to produce designer feed, recombinant proteins, biopharmaceuticals, and vaccines.


Assuntos
Microalgas , Microalgas/genética , Microalgas/metabolismo , Fertilizantes , Biotecnologia , Produtos Agrícolas , Biomassa
17.
Trends Biotechnol ; 41(6): 750-759, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36581482

RESUMO

Algae are a promising feedstock for the sustainable production of feed, fuels, and chemicals. Especially in arid regions such as the Arabian Peninsula, algae could play a significant role in enhancing food security, economic diversification, and decarbonization. Within this context, the regional potential of algae commercialization is discussed, exploring opportunities and challenges across technical, societal, and political aspects. Climate, availability of process inputs, and funding opportunities are identified as essential strengths that increase the global competitiveness of regional algae production. Implementation challenges include climate change, securing human resources, and the vital transitioning from research to commercial scales. With balanced management, however, the region's efforts could be the push that is necessary for algal technologies to take off globally.


Assuntos
Biocombustíveis , Microalgas , Humanos , Plantas , Biotecnologia , Mudança Climática , Biomassa
18.
Bioresour Technol ; 367: 128239, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332861

RESUMO

Microalgae are considered an efficient accumulator and promising source of Se for feed additive purposes. This study aimed at investigating, for the first time, the effect of phosphorus limitation on Se accumulation and uptake efficiency in N.oceanica. A range of phosphorus concentrations (0-2470 µM) were tested in either the presence or absence of sodium selenite (0, 5, 30 µM). Se accumulation was increased up to 16-fold and Se uptake efficiency was increased up to 3.6-fold under phosphorus growth-limiting concentrations. N.oceanica was then cultivated in a 1.8L flat-panel photobioreactor in batch operation under two phosphorus growth-limiting concentrations (250 and 750 µM) where the accumulation of Se in the microalgal biomass, as well as its presence in the spent medium were analysed. This study is the first to investigate the effect of phosphorus limitation for increasing Se accumulation in microalgae, and to prevent the release of Se in wastewater.


Assuntos
Microalgas , Estramenópilas , Fósforo/farmacologia , Fotobiorreatores , Biomassa
19.
Metab Eng ; 75: 110-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36494025

RESUMO

Medium-chain-length fatty alcohols have broad applications in the surfactant, lubricant, and cosmetic industries. Their acetate esters are widely used as flavoring and fragrance substances. Pseudomonas putida KT2440 is a promising chassis for fatty alcohol and ester production at the industrial scale due to its robustness, versatility, and high oxidative capacity. However, P. putida has also numerous native alcohol dehydrogenases, which lead to the degradation of these alcohols and thereby hinder its use as an effective biocatalyst. Therefore, to harness its capacity as a producer, we constructed two engineered strains (WTΔpedFΔadhP, GN346ΔadhP) incapable of growing on mcl-fatty alcohols by deleting either a cytochrome c oxidase PedF and a short-chain alcohol dehydrogenase AdhP in P. putida or AdhP in P. putida GN346. Carboxylic acid reductase, phosphopantetheinyl transferase, and alcohol acetyltransferase were expressed in the engineered P. putida strains to produce hexyl acetate. Overexpression of transporters further increased 1-hexanol and hexyl acetate production. The optimal strain G23E-MPAscTP produced 93.8 mg/L 1-hexanol and 160.5 mg/L hexyl acetate, with a yield of 63.1%. The engineered strain is applicable for C6-C10 fatty alcohols and their acetate ester production. This study lays a foundation for P. putida being used as a microbial cell factory for sustainable synthesis of a broad range of products based on medium-chain-length fatty alcohols.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Engenharia Metabólica , Ésteres/metabolismo , Álcoois Graxos/metabolismo , Acetatos/metabolismo
20.
Biotechnol Prog ; 39(2): e3318, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36512364

RESUMO

Real-time, detailed online information on cell cultures is essential for understanding modern biopharmaceutical production processes. The determination of key parameters, such as cell density and viability, is usually based on the offline sampling of bioreactors. Gathering offline samples is invasive, has a low time resolution, and risks altering or contaminating the production process. In contrast, measuring process parameters online provides more safety for the process, has a high time resolution, and thus can aid in timely process control actions. We used online double differential digital holographic microscopy (D3HM) and machine learning to perform non-invasive online cell concentration and viability monitoring of insect cell cultures in bioreactors. The performance of D3HM and the machine learning model was tested for a selected variety of baculovirus constructs, products, and multiplicities of infection (MOI). The results show that with online holographic microscopy insect cell proliferation and baculovirus infection can be monitored effectively in real time with high resolution for a broad range of process parameters and baculovirus constructs. The high-resolution data generated by D3HM showed the exact moment of peak cell densities and temporary events caused by feeding. Furthermore, D3HM allowed us to obtain information on the state of the cell culture at the individual cell level. Combining this detailed, real-time information about cell cultures with methodical machine learning models can increase process understanding, aid in decision-making, and allow for timely process control actions during bioreactor production of recombinant proteins.


Assuntos
Reatores Biológicos , Microscopia , Animais , Proteínas Recombinantes/metabolismo , Insetos , Proliferação de Células , Baculoviridae/genética , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA