Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Cancers (Basel) ; 16(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39001493

RESUMO

In this multicenter, retrospective study, we evaluated the added value of magnetic resonance dispersion imaging (MRDI) to standard multiparametric MRI (mpMRI) for PCa detection. The study included 76 patients, including 51 with clinically significant prostate cancer (csPCa), who underwent radical prostatectomy and had an mpMRI including dynamic contrast-enhanced MRI. Two radiologists performed three separate randomized scorings based on mpMRI, MRDI and mpMRI+MRDI. Radical prostatectomy histopathology was used as the reference standard. Imaging and histopathology were both scored according to the Prostate Imaging-Reporting and Data System V2.0 sector map. Sensitivity and specificity for PCa detection were evaluated for mpMRI, MRDI and mpMRI+MRDI. Inter- and intra-observer variability for both radiologists was evaluated using Cohen's Kappa. On a per-patient level, sensitivity for csPCa for radiologist 1 (R1) for mpMRI, MRDI and mpMRI+MRDI was 0.94, 0.82 and 0.94, respectively. For the second radiologist (R2), these were 0.78, 0.94 and 0.96. R1 detected 4% additional csPCa cases using MRDI compared to mpMRI, and R2 detected 20% extra csPCa cases using MRDI. Inter-observer agreement was significant only for MRDI (Cohen's Kappa = 0.4250, p = 0.004). The results of this study show the potential of MRDI to improve inter-observer variability and the detection of csPCa.

2.
Ultrasound Med Biol ; 50(8): 1194-1202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734528

RESUMO

OBJECTIVES: To assess the value of 3D multiparametric ultrasound imaging, combining hemodynamic and tissue stiffness quantifications by machine learning, for the prediction of prostate biopsy outcomes. METHODS: After signing informed consent, 54 biopsy-naïve patients underwent a 3D dynamic contrast-enhanced ultrasound (DCE-US) recording, a multi-plane 2D shear-wave elastography (SWE) scan with manual sweeping from base to apex of the prostate, and received 12-core systematic biopsies (SBx). 3D maps of 18 hemodynamic parameters were extracted from the 3D DCE-US quantification and a 3D SWE elasticity map was reconstructed based on the multi-plane 2D SWE acquisitions. Subsequently, all the 3D maps were segmented and subdivided into 12 regions corresponding to the SBx locations. Per region, the set of 19 computed parameters was further extended by derivation of eight radiomic features per parameter. Based on this feature set, a multiparametric ultrasound approach was implemented using five different classifiers together with a sequential floating forward selection method and hyperparameter tuning. The classification accuracy with respect to the biopsy reference was assessed by a group-k-fold cross-validation procedure, and the performance was evaluated by the Area Under the Receiver Operating Characteristics Curve (AUC). RESULTS: Of the 54 patients, 20 were found with clinically significant prostate cancer (csPCa) based on SBx. The 18 hemodynamic parameters showed mean AUC values varying from 0.63 to 0.75, and SWE elasticity showed an AUC of 0.66. The multiparametric approach using radiomic features derived from hemodynamic parameters only produced an AUC of 0.81, while the combination of hemodynamic and tissue-stiffness quantifications yielded a significantly improved AUC of 0.85 for csPCa detection (p-value < 0.05) using the Gradient Boosting classifier. CONCLUSIONS: Our results suggest 3D multiparametric ultrasound imaging combining hemodynamic and tissue-stiffness features to represent a promising diagnostic tool for biopsy outcome prediction, aiding in csPCa localization.


Assuntos
Técnicas de Imagem por Elasticidade , Imageamento Tridimensional , Próstata , Neoplasias da Próstata , Ultrassonografia , Humanos , Masculino , Próstata/diagnóstico por imagem , Próstata/patologia , Pessoa de Meia-Idade , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Idoso , Imageamento Tridimensional/métodos , Técnicas de Imagem por Elasticidade/métodos , Ultrassonografia/métodos , Valor Preditivo dos Testes , Biópsia
3.
Eur Radiol ; 34(7): 4764-4773, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38112765

RESUMO

OBJECTIVES: The aim of this study was to apply spatiotemporal analysis of contrast-enhanced ultrasound (CEUS) loops to quantify the enhancement heterogeneity for improving the differentiation between benign and malignant breast lesions. MATERIALS AND METHODS: This retrospective study included 120 women (age range, 18-82 years; mean, 52 years) scheduled for ultrasound-guided biopsy. With the aid of brightness-mode images, the border of each breast lesion was delineated in the CEUS images. Based on visual evaluation and quantitative metrics, the breast lesions were categorized into four grades of different levels of contrast enhancement. Grade-1 (hyper-enhanced) and grade-2 (partly-enhanced) breast lesions were included in the analysis. Four parameters reflecting enhancement heterogeneity were estimated by spatiotemporal analysis of neighboring time-intensity curves (TICs). By setting the threshold on mean parameter, the diagnostic performance of the four parameters for differentiating benign and malignant lesions was evaluated. RESULTS: Sixty-four of the 120 patients were categorized as grade 1 or 2 and used for estimating the four parameters. At the pixel level, mutual information and conditional entropy present significantly different values between the benign and malignant lesions (p < 0.001 in patients of grade 1, p = 0.002 in patients of grade 1 or 2). For the classification of breast lesions, mutual information produces the best diagnostic performance (AUC = 0.893 in patients of grade 1, AUC = 0.848 in patients of grade 1 or 2). CONCLUSIONS: The proposed spatiotemporal analysis for assessing the enhancement heterogeneity shows promising results to aid in the diagnosis of breast cancer by CEUS. CLINICAL RELEVANCE STATEMENT: The proposed spatiotemporal method can be developed as a standardized software to automatically quantify the enhancement heterogeneity of breast cancer on CEUS, possibly leading to the improved diagnostic accuracy of differentiation between benign and malignant lesions. KEY POINTS: • Advanced spatiotemporal analysis of ultrasound contrast-enhanced loops for aiding the differentiation of malignant or benign breast lesions. • Four parameters reflecting the enhancement heterogeneity were estimated in the hyper- and partly-enhanced breast lesions by analyzing the neighboring pixel-level time-intensity curves. • For the classification of hyper-enhanced breast lesions, mutual information produces the best diagnostic performance (AUC = 0.893).


Assuntos
Neoplasias da Mama , Meios de Contraste , Ultrassonografia Mamária , Humanos , Feminino , Pessoa de Meia-Idade , Adulto , Neoplasias da Mama/diagnóstico por imagem , Idoso , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Ultrassonografia Mamária/métodos , Diagnóstico Diferencial , Adolescente , Adulto Jovem , Análise Espaço-Temporal , Aumento da Imagem/métodos
5.
Cancers (Basel) ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370685

RESUMO

Prostate cancer (PCa) is a highly prevalent cancer type with a heterogeneous prognosis. An accurate assessment of tumor aggressiveness can pave the way for tailored treatment strategies, potentially leading to better outcomes. While tumor aggressiveness is typically assessed based on invasive methods (e.g., biopsy), radiogenomics, combining diagnostic imaging with genomic information can help uncover aggressive (imaging) phenotypes, which in turn can provide non-invasive advice on individualized treatment regimens. In this study, we carried out a parallel analysis on both imaging and transcriptomics data in order to identify features associated with clinically significant PCa (defined as an ISUP grade ≥ 3), subsequently evaluating the correlation between them. Textural imaging features were extracted from multi-parametric MRI sequences (T2W, DWI, and DCE) and combined with DCE-derived parametric pharmacokinetic maps obtained using magnetic resonance dispersion imaging (MRDI). A transcriptomic analysis was performed to derive functional features on transcription factors (TFs), and pathway activity from RNA sequencing data, here referred to as transcriptomic features. For both the imaging and transcriptomic features, different machine learning models were separately trained and optimized to classify tumors in either clinically insignificant or significant PCa. These models were validated in an independent cohort and model performance was used to isolate a subset of relevant imaging and transcriptomic features to be further investigated. A final set of 31 imaging features was correlated to 33 transcriptomic features obtained on the same tumors. Five significant correlations (p < 0.05) were found, of which, three had moderate strength (|r| ≥ 0.5). The strongest significant correlations were seen between a perfusion-based imaging feature-MRDI A median-and the activities of the TFs STAT6 (-0.64) and TFAP2A (-0.50). A higher-order T2W textural feature was also significantly correlated to the activity of the TF STAT6 (-0.58). STAT6 plays an important role in controlling cell proliferation and migration. Loss of the AP2alpha protein expression, quantified by TFAP2A, has been strongly associated with aggressiveness and progression in PCa. According to our findings, a combination of texture features extracted from T2W and DCE, as well as perfusion-based pharmacokinetic features, can be considered for the prediction of clinically significant PCa, with the pharmacokinetic MRDI A feature being the most correlated with the underlying transcriptomic information. These results highlight a link between quantitative imaging features and the underlying transcriptomic landscape of prostate tumors.

6.
Eur Urol Open Sci ; 49: 32-43, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36874606

RESUMO

Introduction and hypothesis: The tendency toward population-based screening programs for prostate cancer (PCa) is expected to increase demand for prebiopsy imaging. This study hypothesizes that a machine learning image classification algorithm for three-dimensional multiparametric transrectal prostate ultrasound (3D mpUS) can detect PCa accurately. Design: This is a phase 2 prospective multicenter diagnostic accuracy study. A total of 715 patients will be included in a period of approximately 2 yr. Patients are eligible in case of suspected PCa for which prostate biopsy is indicated or in case of biopsy-proven PCa for which radical prostatectomy (RP) will be performed. Exclusion criteria are prior treatment for PCa or contraindications for ultrasound contrast agents (UCAs). Protocol overview: Study participants will undergo 3D mpUS, consisting of 3D grayscale, 4D contrast-enhanced ultrasound, and 3D shear wave elastography (SWE). Whole-mount RP histopathology will provide the ground truth to train the image classification algorithm. Patients included prior to prostate biopsy will be used for subsequent preliminary validation. There is a small, anticipated risk for participants associated with the administration of a UCA. Informed consent has to be given prior to study participation, and (serious) adverse events will be reported. Statistical analysis: The primary outcome will be the diagnostic performance of the algorithm for detecting clinically significant PCa (csPCa) on a per-voxel and a per-microregion level. Diagnostic performance will be reported as the area under the receiver operating characteristic curve. Clinically significant PCa is defined as the International Society of Urological grade group ≥2. Full-mount RP histopathology will be used as the reference standard. Secondary outcomes will be sensitivity, specificity, negative predictive value, and positive predictive value for csPCa on a per-patient level, evaluated in patients included prior to prostate biopsy, using biopsy results as the reference standard. A further analysis will be performed on the ability of the algorithm to differentiate between low-, intermediate-, and high-risk tumors. Discussion and summary: This study aims to develop an ultrasound-based imaging modality for PCa detection. Subsequent head-to-head validation trials with magnetic resonance imaging have to be performed in order to determine its role in clinical practice for risk stratification in patients suspected for PCa.

7.
IEEE Trans Biomed Eng ; 70(1): 42-54, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714094

RESUMO

With a typical 100-500 nm diameter, nanobubbles are a promising new-generation ultrasound contrast agent that paves ways for several applications, such as efficient drug delivery, molecular imaging, and assessment of vascular permeability. Due to their unique physical properties, nanobubbles exhibit distinct in vivo pharmacokinetics. We have shown that the first pass of the nanobubble bolus is usually accompanied by the appearance of a second bolus (wave) within a time range of about 15 minutes. Such phenomenon, to the best of our knowledge, has never been observed with conventional microbubbles and smaller molecular contrast agents used in MRI and CT. In a previous study, we showed the potential of this phenomenon in supporting cancer diagnosis. This study focuses on developing a new compartmental pharmacokinetic model that can be used to interpret the second-wave phenomenon. With this model, we can analyze more in-depth the roles of several physiological factors affecting the characteristics of the second-wave phenomenon.


Assuntos
Meios de Contraste , Sistemas de Liberação de Medicamentos , Ultrassonografia/métodos , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética/métodos , Microbolhas
8.
Med Phys ; 49(10): 6547-6559, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36049109

RESUMO

PURPOSE: Contrast-enhanced ultrasound (CEUS) by injection of microbubbles (MBs) has shown promise as a cost-effective imaging modality for prostate cancer (PCa) detection. More recently, nanobubbles (NBs) have been proposed as novel ultrasound contrast agents. Unlike MBs, which are intravascular ultrasound contrast agents, the smaller diameter of NBs allows them to cross the vessel wall and target specific receptors on cancer cells such as the prostate-specific membrane antigen (PSMA). It has been demonstrated that PSMA-targeted NBs can bind to the receptors of PCa cells and show a prolonged retention effect in dual-tumor mice models. However, the analysis of the prolonged retention effect has so far been limited to qualitative or semi-quantitative approaches. METHODS: This work introduces two pharmacokinetics models for quantitative analysis of time-intensity curves (TICs) obtained from the CEUS loops. The first model is based on describing the vascular input by the modified local density random walk (mLDRW) model and independently interprets TICs from each tumor lesion. Differently, the second model is based on the reference-tissue model, previously proposed in the context of nuclear imaging, and describes the binding kinetics of an indicator in a target tissue by using a reference tissue where binding does not occur. RESULTS: Our results show that four estimated parameters, ß, ß / λ $\beta /\lambda $ , ß + / ß - ${\beta }_ + /{\beta }_ - $ , for the mLDRW-input model, and γ for the reference-based model, were significantly different (p-value <0.05) between free NBs and PSMA-NBs. These parameters estimated by the two models demonstrate different behaviors between PSMA-targeted and free NBs. CONCLUSIONS: These promising results encourage further quantitative analysis of targeted NBs for improved cancer diagnostics and characterization.


Assuntos
Meios de Contraste , Neoplasias da Próstata , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Humanos , Masculino , Camundongos , Microbolhas , Neoplasias da Próstata/metabolismo , Ultrassonografia/métodos
9.
Sci Rep ; 12(1): 13619, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948582

RESUMO

Investigation of nanobubble (NB) pharmacokinetics in contrast-enhanced ultrasound (CEUS) at the pixel level shows a unique phenomenon where the first pass of the contrast agent bolus is accompanied by a second wave. This effect has not been previously observed in CEUS with microbubbles. The objective of this study was to investigate this second-wave phenomenon and its potential clinical applications. Seven mice with a total of fourteen subcutaneously-implanted tumors were included in the experiments. After injecting a bolus of NBs, the NB-CEUS images were acquired to record the time-intensity curves (TICs) at each pixel. These TICs are fitted to a pharmacokinetic model which we designed to describe the observed second-wave phenomenon. The estimated model parameters are presented as parametric maps to visualize the characteristics of tumor lesions. Histological analysis was also conducted in one mouse to compare the molecular features of tumor tissue with the obtained parametric maps. The second-wave phenomenon is evidently shown in a series of pixel-based TICs extracted from either tumor or tissues. The value of two model parameters, the ratio of the peak intensities of the second over the first wave, and the decay rate of the wash-out process present large differences between malignant tumor and normal tissue (0.04 < Jessen-Shannon divergence < 0.08). The occurrence of a second wave is a unique phenomenon that we have observed in NB-CEUS imaging of both mouse tumor and tissue. As the characteristics of the second wave are different between tumor and tissue, this phenomenon has the potential to support the diagnosis of cancerous lesions.


Assuntos
Microbolhas , Neoplasias , Animais , Meios de Contraste/farmacocinética , Diagnóstico por Imagem , Camundongos , Neoplasias/diagnóstico por imagem , Ultrassonografia/métodos
10.
J Endourol ; 36(10): 1362-1370, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35651279

RESUMO

Objective: To assess the diagnostic accuracy and intra-observer agreement of endoscopic stone recognition (ESR) compared with formal stone analysis. Introduction: Stone analysis is a corner stone in the prevention of stone recurrence. Although X-ray diffraction (XRD) and infrared spectroscopy are the recommended techniques for reliable formal stone analysis, this is not always possible, and the process takes time and is costly. ESR could be an alternative, as it would give immediate information on stone composition. Materials and Methods: Fifteen endourologists predicted stone composition based on 100 videos from ureterorenoscopy. Diagnostic accuracy was evaluated by comparing the prediction from visual assessment with stone analysis by XRD. After 30 days, the videos were reviewed again in a random order to assess intra-observer agreement. Results: The median diagnostic accuracy for calcium oxalate monohydrate was 54% in questionnaire 1 (Q1) and 59% in questionnaire 2 (Q2), whereas calcium oxalate dihydrate had a median diagnostic accuracy of 75% in Q1 and 50% in Q2. The diagnostic accuracy for calcium hydroxyphosphate was 10% in Q1 and 13% in Q2. The median diagnostic accuracy for calcium hydrogen phosphate dihydrate and calcium magnesium phosphate was 0% in both questionnaires. The median diagnostic accuracy for magnesium ammonium phosphate was 20% in Q1 and 40% in Q2. The median diagnostic accuracy for uric acid was 22% in both questionnaires. Finally, there was a diagnostic accuracy of 60% in Q1 and 80% in Q2 for cystine. The intra-observer agreement ranged between 45% and 72%. Conclusion: Diagnostic accuracy of ESR is limited and intra-observer agreement is below the threshold of acceptable agreement.


Assuntos
Cálculos Renais , Cálculos Urinários , Cálcio , Oxalato de Cálcio , Cistina , Humanos , Cálculos Renais/química , Cálculos Renais/diagnóstico , Estruvita , Ácido Úrico , Cálculos Urinários/química , Cálculos Urinários/diagnóstico
11.
Ultrasound Med Biol ; 48(7): 1348-1355, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35414449

RESUMO

The acoustic parameter of non-linearity B/A has been found capable of discriminating some types of pathological tissue from healthy tissue. The literature on the utility of B/A for cancer diagnostics is very limited, with measurements on the human breast and liver. This work expands the current research on cancer diagnostics by B/A assessment of eight slices of human clear cell renal cell carcinoma (ccRCC) from two patients and four slices of healthy kidney tissue from two healthy kidney samples. The Wilcoxon test identified the B/A distribution of malignant tissue as not significantly different from that of healthy tissue. An alternative way of defining outliers resulted in median B/A values of 8.1 for ccRCC and 6.8 for healthy tissue (p < 0.05). Acoustic attenuation at 2.1 MHz was significantly greater (p < 0.05) for ccRCC (1.7 dB/cm) than for healthy tissue (1.0 dB/cm). The observed differences in the measured values suggest that B/A and acoustic attenuation may represent potential diagnostic markers of ccRCC. More data and an improved experimental design are required to provide a definitive conclusion on the utility of B/A for cancer diagnostics.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Biomarcadores Tumorais , Carcinoma de Células Renais/diagnóstico por imagem , Humanos , Rim/patologia , Neoplasias Renais/diagnóstico por imagem
12.
Br J Radiol ; 95(1131): 20210363, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34324383

RESUMO

The current recommendation in patients with a clinical suspicion for prostate cancer is to perform systematic biopsies extended with targeted biopsies, depending on mpMRI results. Following a positive mpMRI [i.e. Prostate Imaging Reporting and Data System (PI-RADS) ≥3], three targeted biopsy approaches can be performed: visual registration of the MRI images with real-time ultrasound imaging; software-assisted fusion of the MRI images and real-time ultrasound images, and in-bore biopsy within the MR scanner. This collaborative review discusses the advantages and disadvantages of each targeting approach and elaborates on future developments. Cancer detection rates seem to mostly depend on practitioner experience and selection criteria (biopsy naïve, previous negative biopsy, prostate-specific antigen (PSA) selection criteria, presence of a lesion on MRI), and to a lesser extent dependent on biopsy technique. There is no clear consensus on the optimal targeting approach. The choice of technique depends on local experience and availability of equipment, individual patient characteristics, and onsite cost-benefit analysis. Innovations in imaging techniques and software-based algorithms may lead to further improvements in this field.


Assuntos
Biópsia Guiada por Imagem/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Ultrassonografia de Intervenção/métodos , Humanos , Masculino
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3153-3156, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891910

RESUMO

Multi-parametric MRI is part of the standard prostate cancer (PCa) diagnostic protocol. Recent imaging guidelines (PI-RADS v2) downgraded the value of Dynamic Contrast-Enhanced (DCE)-MRI in the diagnosis of PCa. A purely qualitative analysis of the DCE-MRI time series, as it is generally done by radiologists, might indeed overlook information on the microvascular architecture and function. In this study, we investigate the discriminative power of quantitative imaging features derived from texture and pharmacokinetic analysis of DCE-MRI. In 605 regions of interest (benign and malignant tissue) delineated in 80 patients, we found through independent cross-validation that a subset of quantitative spatial and temporal features extracted from DCE-MRI and incorporated in machine learning classifiers obtains a good diagnostic performance (AUC = 0.80-0.86) in distinguishing malignant from benign regions.Clinical Relevance- These findings highlight the underlying potential of quantitative DCE-derived radiomic features in identifying PCa by MRI.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Estudos Retrospectivos
14.
Med Phys ; 48(11): 6765-6780, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34580883

RESUMO

PURPOSE: An antibubble is an encapsulated gas bubble with an incompressible inclusion inside the gas phase. Current-generation ultrasound contrast agents are bubble-based: they contain encapsulated gas bubbles with no inclusions. The objective of this work is to determine the linear and nonlinear responses of an antibubble contrast agent in comparison to two bubble-based ultrasound contrast agents, that is, reference bubbles and SonoVue TM . METHODS: Side scatter and attenuation of the three contrast agents were measured, using single-element ultrasound transducers, operating at 1.0, 2.25, and 3.5 MHz. The scatter measurements were performed at acoustic pressures of 200 and 300 kPa for 1.0 MHz, 300 kPa, and 450 kPa for 2.25 MHz, and 370 and 560 kPa for 3.5 MHz. Attenuation measurements were conducted at pressures of 13, 55, and 50 kPa for 1.0, 2.25, and 3.5 MHz, respectively. In addition, a dynamic contrast-enhanced ultrasound measurement was performed, imaging the contrast agent flow through a vascular phantom with a commercial diagnostic linear array probe. RESULTS: Antibubbles generated equivalent or stronger harmonic signal, compared to bubble-based ultrasound contrast agents. The second harmonic side-scatter amplitude of the antibubble agent was up to 3 dB greater than that of reference bubble agent and up to 4 dB greater than that of SonoVue TM at the estimated concentration of 8 × 10 4 bubbles/mL. For ultrasound with a center transmit frequency of 1.0 MHz, the attenuation coefficient of the antibubble agent was 8.7 dB/cm, whereas the attenuation coefficient of the reference agent was 7.7 and 0.3 dB/cm for SonoVue TM . At 2.25 MHz, the attenuation coefficients were 9.7, 3.0, and 0.6 dB/cm, respectively. For 3.5 MHz, they were 4.4, 1.8, and 1.0 dB/cm, respectively. A dynamic contrast-enhanced ultrasound recording showed the nonlinear signal of the antibubble agent to be 31% greater than for reference bubbles and 23% lower than SonoVue TM at a high concentration of 2 × 10 6 bubbles/mL. CONCLUSION: Endoskeletal antibubbles generate comparable or greater higher harmonics than reference bubbles and SonoVue TM . As a result, antibubbles with liquid therapeutic agents inside the gas phase have high potential to become a traceable therapeutic agent.


Assuntos
Acústica , Meios de Contraste , Microbolhas , Imagens de Fantasmas , Fenômenos Físicos , Ultrassonografia
15.
J Acoust Soc Am ; 149(4): 2200, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33940890

RESUMO

The nonlinear parameter of ultrasound B/A has shown to be a useful diagnostic parameter, reflecting medium content, structure, and temperature. Despite its recognized values, B/A is not yet used as a diagnostic tool in the clinic due to the limitations of current measurement and imaging techniques. This review presents an extensive and comprehensive overview of the techniques developed for B/A measurement of liquid and liquid-like media (e.g., tissue), identifying the methods that are most promising from a clinical perspective. This work summarizes the progress made in the field and the typical challenges on the way to B/A estimation. Limitations and problems with the current techniques are identified, suggesting directions that may lead to further improvement. Since the basic theory of the physics behind the measurement strategies is presented, it is also suited for a reader who is new to nonlinear ultrasound.


Assuntos
Física , Ultrassonografia
16.
Eur Urol Focus ; 7(1): 78-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31028016

RESUMO

BACKGROUND: Although recent advances in multiparametric magnetic resonance imaging (MRI) led to an increase in MRI-transrectal ultrasound (TRUS) fusion prostate biopsies, these are time consuming, laborious, and costly. Introduction of deep-learning approach would improve prostate segmentation. OBJECTIVE: To exploit deep learning to perform automatic, real-time prostate (zone) segmentation on TRUS images from different scanners. DESIGN, SETTING, AND PARTICIPANTS: Three datasets with TRUS images were collected at different institutions, using an iU22 (Philips Healthcare, Bothell, WA, USA), a Pro Focus 2202a (BK Medical), and an Aixplorer (SuperSonic Imagine, Aix-en-Provence, France) ultrasound scanner. The datasets contained 436 images from 181 men. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Manual delineations from an expert panel were used as ground truth. The (zonal) segmentation performance was evaluated in terms of the pixel-wise accuracy, Jaccard index, and Hausdorff distance. RESULTS AND LIMITATIONS: The developed deep-learning approach was demonstrated to significantly improve prostate segmentation compared with a conventional automated technique, reaching median accuracy of 98% (95% confidence interval 95-99%), a Jaccard index of 0.93 (0.80-0.96), and a Hausdorff distance of 3.0 (1.3-8.7) mm. Zonal segmentation yielded pixel-wise accuracy of 97% (95-99%) and 98% (96-99%) for the peripheral and transition zones, respectively. Supervised domain adaptation resulted in retainment of high performance when applied to images from different ultrasound scanners (p > 0.05). Moreover, the algorithm's assessment of its own segmentation performance showed a strong correlation with the actual segmentation performance (Pearson's correlation 0.72, p < 0.001), indicating that possible incorrect segmentations can be identified swiftly. CONCLUSIONS: Fusion-guided prostate biopsies, targeting suspicious lesions on MRI using TRUS are increasingly performed. The requirement for (semi)manual prostate delineation places a substantial burden on clinicians. Deep learning provides a means for fast and accurate (zonal) prostate segmentation of TRUS images that translates to different scanners. PATIENT SUMMARY: Artificial intelligence for automatic delineation of the prostate on ultrasound was shown to be reliable and applicable to different scanners. This method can, for example, be applied to speed up, and possibly improve, guided prostate biopsies using magnetic resonance imaging-transrectal ultrasound fusion.


Assuntos
Biópsia/métodos , Aprendizado Profundo , Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética/métodos , Próstata/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Inteligência Artificial , Humanos , Masculino , Pessoa de Meia-Idade , Reto , Ultrassonografia
17.
Comput Methods Programs Biomed ; 198: 105810, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33218707

RESUMO

BACKGROUND AND OBJECTIVE: Left ventricle (LV) dysfunction always occurs at early heart-failure stages, producing variations in the LV flow patterns. Cardiac diagnostics may therefore benefit from flow-pattern analysis. Several visualization tools have been proposed that require ultrafast ultrasound acquisitions. However, ultrafast ultrasound is not standard in clinical scanners. Meanwhile techniques that can handle low frame rates are still lacking. As a result, the clinical translation of these techniques remains limited, especially for 3D acquisitions where the volume rates are intrinsically low. METHODS: To overcome these limitations, we propose a novel technique for the estimation of LV blood velocity and relative-pressure fields from dynamic contrast-enhanced ultrasound (DCE-US) at low frame rates. Different from other methods, our method is based on the time-delays between time-intensity curves measured at neighbor pixels in the DCE-US loops. Using Navier-Stokes equation, we regularize the obtained velocity fields and derive relative-pressure estimates. Blood flow patterns were characterized with regard to their vorticity, relative-pressure changes (dp/dt) in the LV outflow tract, and viscous energy loss, as these reflect the ejection efficiency. RESULTS: We evaluated the proposed method on 18 patients (9 responders and 9 non-responders) who underwent cardiac resynchronization therapy (CRT). After CRT, the responder group evidenced a significant (p<0.05) increase in vorticity and peak dp/dt, and a non-significant decrease in viscous energy loss. No significant difference was found in the non-responder group. Relative feature variation before and after CRT evidenced a significant difference (p<0.05) between responders and non-responders for vorticity and peak dp/dt. Finally, the method feasibility is also shown with 3D DCE-US. CONCLUSIONS: Using the proposed method, adequate visualization and quantification of blood flow patterns are successfully enabled based on low-rate DCE-US of the LV, facilitating the clinical adoption of the method using standard ultrasound scanners. The clinical value of the method in the context of CRT is also shown.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Ventrículos do Coração/diagnóstico por imagem , Hemodinâmica , Humanos , Resultado do Tratamento
18.
IEEE Trans Med Imaging ; 40(3): 829-839, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33180723

RESUMO

Ultrasound localization microscopy has enabled super-resolution vascular imaging through precise localization of individual ultrasound contrast agents (microbubbles) across numerous imaging frames. However, analysis of high-density regions with significant overlaps among the microbubble point spread responses yields high localization errors, constraining the technique to low-concentration conditions. As such, long acquisition times are required to sufficiently cover the vascular bed. In this work, we present a fast and precise method for obtaining super-resolution vascular images from high-density contrast-enhanced ultrasound imaging data. This method, which we term Deep Ultrasound Localization Microscopy (Deep-ULM), exploits modern deep learning strategies and employs a convolutional neural network to perform localization microscopy in dense scenarios, learning the nonlinear image-domain implications of overlapping RF signals originating from such sets of closely spaced microbubbles. Deep-ULM is trained effectively using realistic on-line synthesized data, enabling robust inference in-vivo under a wide variety of imaging conditions. We show that deep learning attains super-resolution with challenging contrast-agent densities, both in-silico as well as in-vivo. Deep-ULM is suitable for real-time applications, resolving about 70 high-resolution patches ( 128×128 pixels) per second on a standard PC. Exploiting GPU computation, this number increases to 1250 patches per second.


Assuntos
Aprendizado Profundo , Microscopia , Meios de Contraste , Microbolhas , Ultrassonografia
19.
BJU Int ; 126(4): 481-493, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32315112

RESUMO

OBJECTIVES: To compare and evaluate a multiparametric magnetic resonance imaging (mpMRI)-targeted biopsy (TBx) strategy, contrast-ultrasound-dispersion imaging (CUDI)-TBx strategy and systematic biopsy (SBx) strategy for the detection of clinically significant prostate cancer (csPCa) in biopsy-naïve men. PATIENTS AND METHODS: A prospective, single-centre paired diagnostic study included 150 biopsy-naïve men, from November 2015 to November 2018. All men underwent pre-biopsy mpMRI and CUDI followed by a 12-core SBx taken by an operator blinded from the imaging results. Men with suspicious lesions on mpMRI and/or CUDI also underwent MRI-TRUS fusion-TBx and/or cognitive CUDI-TBx after SBx by a second operator. A non-inferiority analysis of the mpMRI- and CUDI-TBx strategies in comparison with SBx for International Society of Urological Pathology Grade Group [GG] ≥2 PCa in any core with a non-inferiority margin of 1 percentage point was performed. Additional analyses for GG ≥2 PCa with cribriform growth pattern and/or intraductal carcinoma (CR/IDC), and GG ≥3 PCa were performed. Differences in detection rates were tested using McNemar's test with adjusted Wald confidence intervals. RESULTS: After enrolment of 150 men, an interim analysis was performed. Both the mpMRI- and CUDI-TBx strategies were inferior to SBx for GG ≥2 PCa detection and the study was stopped. SBx found significantly more GG ≥2 PCa: 39% (56/142), as compared with 29% (41/142) and 28% (40/142) for mpMRI-TBx and CUDI-TBx, respectively (P < 0.05). SBx found significantly more GG = 1 PCa: 14% (20/142) compared to 1% (two of 142) and 3% (four of 142) with mpMRI-TBx and CUDI-TBx, respectively (P < 0.05). Detection of GG ≥2 PCa with CR/IDC and GG ≥3 PCa did not differ significantly between the strategies. The mpMRI- and CUDI-TBx strategies were comparable in detection but the mpMRI-TBx strategy had less false-positive findings (18% vs 53%). CONCLUSIONS: In our study in biopsy-naïve men, the mpMRI- and CUDI-TBx strategies had comparable PCa detection rates, but the mpMRI-TBX strategy had the least false-positive findings. Both strategies were inferior to SBx for the detection of GG ≥2 PCa, despite reduced detection of insignificant GG = 1 PCa. Both strategies did not significantly differ from SBx for the detection of GG ≥2 PCa with CR/IDC and GG ≥3 PCa.


Assuntos
Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Ultrassonografia , Idoso , Meios de Contraste , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estudos Prospectivos , Sensibilidade e Especificidade
20.
Prostate Cancer ; 2020: 4626781, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308996

RESUMO

OBJECTIVE: To compare prostate cancer detection rates (CDRs) and pathology results with targeted prostate biopsy (TB) and systematic prostate biopsy (SB) in biopsy-naive men. METHODS: An in-patient control study of 82 men undergoing SB and subsequent TB in case of positive prostate MRI between 2015 and 2017 in the Jeroen Bosch Hospital, the Netherlands. RESULTS: Prostate cancer (PCa) was detected in 54.9% with 70.7% agreement between TB and SB. Significant PCa (Gleason score ≥7) was detected in 24.4%. The CDR with TB and SB was 35.4% and 48.8%, respectively (p=0.052). The CDR of significant prostate cancer with TB and SB was both 20.7%. Clinically significant pathology upgrading occurred in 7.3% by adding TB to SB and 22.0% by adding SB to TB. CONCLUSIONS: There is no statistically significant difference between CDRs of SB and TB. Both SB and TB miss significant PCas. Moreover, pathology upgrading occurred more often by adding SB to TB than vice versa. This indicates that the omission of SB in this study population might not be justified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA