Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159496, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649008

RESUMO

This work aims to understand better the mechanism of cellular processes accompanying the activation of human T cells and to develop a novel, fast, label-free approach to identify molecular biomarkers for this process. The standard methodology for confirming the activation state of T cells is based on flow cytometry and using antibodies recognizing activation markers. The method provide high specificity detection but may be susceptible to background staining or non-specific secondary antibody reactions. Here, we evaluated the potential of Raman-based molecular imaging in distinguishing non-activated and activated human T cells. Confocal Raman microscopy was performed on T cells followed by chemometrics to obtain comprehensive molecular information, while Stimulated Raman Scattering imaging was used to quickly provide high-resolution images of selected cellular components of activated and non-activated cells. For the first time, carotenoids, lipids, and proteins were shown to be important biomarkers of T-cell activation. We found that T-cell activation was accompanied by lipid accumulation and loss of carotenoid content. Our findings on the biochemical, morphological, and structural changes associated with activated mature T cells provide insights into the molecular changes that occur during therapeutic manipulation of the immune response. The methodology for identifying activated T cells is based on a novel imaging method and supervised and unsupervised chemometrics. It unambiguously identifies specific and unique molecular changes without the need for staining, fixation, or any other sample preparation.


Assuntos
Biomarcadores , Carotenoides , Metabolismo dos Lipídeos , Ativação Linfocitária , Análise Espectral Raman , Linfócitos T , Humanos , Carotenoides/metabolismo , Ativação Linfocitária/imunologia , Linfócitos T/metabolismo , Linfócitos T/imunologia , Análise Espectral Raman/métodos , Biomarcadores/metabolismo , Proteínas/metabolismo
2.
Molecules ; 28(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570783

RESUMO

Antimetabolites, especially 5-fluorouracil, are commonly used clinically to treat breast, colon, and other cancers. However, their side effects and inefficiency in monotherapy have prompted further searches for new combinations. Thus, the anticancer effect of 5-fluorouracil (5-FU) and the sulforaphane analogue, 4-isoselenocyanato-1-butyl 4'-fluorobenzyl sulfoxide (ISC), were tested in in vitro and in vivo models of triple-negative breast cancer (TNBC) as a new option for this treatment-resistant and aggressive type of breast cancer. A synergic interaction between 5-FU and ISC was observed in the TNBC in vitro model MDA-MB-231 cell line, which led to enhanced antiproliferative effects. The results of in vitro studies were confirmed by in vivo tests, which demonstrated stronger tumor growth inhibition and additive interactions between 5-FU and ISC in the murine TNBC model. Moreover, the results of the body mass and blood analysis showed the safety of the tested combination. The mechanistic study revealed that the combined treatment triggered apoptosis and necrosis, as well as inhibited cell migration.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Camundongos , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Antimetabólitos/farmacologia , Antimetabólitos/uso terapêutico , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Sulfóxidos/farmacologia , Imunossupressores/farmacologia , Apoptose , Proliferação de Células
3.
Phys Chem Chem Phys ; 25(25): 16796-16806, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37338271

RESUMO

A new tetrahydroacridine derivative (CHDA) with acetylcholinesterase inhibitory properties was synthesized. Using a range of physicochemical techniques, it was shown that the compound strongly adsorbs onto the surface of planar macroscopic or nanoparticulate gold, forming a nearly full monolayer. The adsorbed CHDA molecules reveal well-defined electrochemical behavior, being irreversibly oxidized to electroactive species. The CHDA also exhibits strong fluorescence, which is effectively quenched after adsorption onto gold via a static quenching mechanism. Both CHDA and its conjugate reveal considerable inhibitory properties against acetylcholinesterase activity, which is promising from the perspective of therapeutic application in the treatment of Alzheimer's disease. Moreover, both agents appear to be non-toxic as demonstrated using in vitro studies. On the other hand, conjugation of CHDA with nanoradiogold particles (Au-198) offers new potential diagnostic perspectives in medical imaging.


Assuntos
Doença de Alzheimer , Radioisótopos de Ouro , Nanopartículas Metálicas , Humanos , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Ouro/química , Radioisótopos de Ouro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/química
4.
Biomed Pharmacother ; 161: 114490, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931031

RESUMO

Female breast cancer is the most deadly cancer in women worldwide. The triple-negative breast cancer subtype therapies, due to the lack of specific drug targets, are still based on systemic chemotherapy with doxorubicin, which is burdened with severe adverse effects. To enhance therapeutic success and protect against systemic toxicity, drug carriers or combination therapy are being developed. Thus, an innovative liposomal formulation containing doxorubicin and the main nutraceutical, sulforaphane, has been developed. The anticancer efficacy and safety of the proposed liposomal formulation was evaluated in vivo, in a 4T1 mouse model of triple-negative breast cancer, and the mechanism of action was determined in vitro, using triple-negative breast cancer MDA-MB-231 and non-tumorigenic breast MCF-10A cell line. The elaborated drug carriers were shown to efficiently deliver both compounds into the cancer cell and direct doxorubicin to the cell nucleus. Incorporation of sulforaphane resulted in a twofold inhibition of tumor growth and the potential of up to a fourfold reduction in doxorubicin concentration due to the synergistic interaction between the two compounds. Sulforaphane was shown to increase the accumulation of doxorubicin in the nuclei of cancer cells, accompanied by inhibition of mitosis, without affecting the reactive oxygen species status of the cell. In normal cells, an antagonistic effect resulting in less cytotoxicity was observed. In vivo results showed that sulforaphane incorporation yielded not only cardioprotective, but also nephro- and hepatoprotective effects. The results of the research revealed the prospects of applying sulforaphane as a component of liposomal doxorubicin in triple-negative breast cancer chemotherapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Doxorrubicina , Lipossomos , Portadores de Fármacos/uso terapêutico , Modelos Animais
5.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296539

RESUMO

The understanding of the mechanism of Topo I inhibition by organic ligands is a crucial source of information that has led to the design of more effective and safe pharmaceuticals in oncological chemotherapy. The vast number of inhibitors that have been studied in this respect over the last decades have enabled the creation of a concept of an 'interfacial inhibitor', thereby describing the machinery of Topo I inhibition. The central module of action of this machinery is the interface of a Topo I/DNA/inhibitor ternary complex. Most of the 'interfacial inhibitors' are primarily kinetic inhibitors that form molecular complexes with an "on-off" rate timing; therefore, all of the contacts between the inhibitor and both the enzyme and the DNA are essential to keep the complex stable and reduce the "off rate". To test this hypothesis, we designed the compound using a C-9-(N-(2'-hydroxyethyl)amino)methyl substituent in an SN38 core, with a view that a flexible substituent may bind inside the nick of a model of the DNA and stabilize the complex, leading to a reduction in the "off rate" of a ligand in a potential ternary complex in vivo. Using docking analysis and molecular dynamics, free energy calculations on the level of the MM-PBSA and MM-GBSA model, here we presented the in silico-calculated structure of a ternary complex involving the studied compound 1. This confirmed our suggestion that compound 1 is situated in a groove of the nicked DNA model in a few conformations. The number of hydrogen bonds between the components of a ternary complex was established, which strengthens the complex and supports our view. The docking analysis and free energy calculations for the receptor structures which were obtained in the MD simulations of the ternary complex 1/DNA/Topo I show that the binding constant is stronger than it was for similar complexes with TPT, CPT, and SN38, which are commonly considered as strong Topo I inhibitors. The binary complex structure 1/DNA was calculated and compared with the experimental results of a complex that was in a solution. The analysis of the cross-peaks in NOESY spectra allowed us to assign the dipolar interactions between the given protons in the calculated structures. A DOSY experiment in the solution confirmed the strong binding of a ligand in a binary complex, having a Ka of 746 mM-1, which was compared with a Ka of 3.78 mM-1 for TPT. The MALDI-ToF MS showed the presence of the biohybrid, thus evidencing the occurrence of DNA alkylation by compound 1. Because of it having a strong molecular complex, alkylation is the most efficient way to reduce the "on-off" timing as it acts as a tool that causes the cog to brake in a working gear, and this is this activity we want to highlight in our contribution. Finally, the Topo I inhibition test showed a lower IC50 of the studied compound than it did for CPT and SN38.


Assuntos
Camptotecina , Prótons , Ligantes , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/química , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase , DNA/metabolismo , Preparações Farmacêuticas
6.
Target Oncol ; 17(3): 203-221, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35567672

RESUMO

Currently available treatment options for patients with refractory metastatic prostate, bladder, or kidney cancers are limited with the prognosis remaining poor. Advances in the pathobiology of tumors has led to the discovery of cancer antigens that may be used as the target for cancer treatment. Antibody-drug conjugates (ADCs) are a relatively new concept in cancer treatment that broaden therapeutic landscape. ADCs are examples of a 'drug delivery into the tumor' system composed of an antigen-directed antibody linked to a cytotoxic drug that may release cytotoxic components after binding to the antigen located on the surface of tumor cells. The clinical properties of drugs are influenced by every component of ADCs. Regarding uro-oncology, enfortumab vedotin (EV) and sacituzumab govitecan (SG) are currently registered for patients with locally advanced or metastatic urothelial cancer following previous treatment with an immune checkpoint inhibitor (iCPI; programmed death receptor-1 [PD-1] or programmed death-ligand 1 [PD-L1]) inhibitor) and platinum-containing chemotherapy. The EV-301 trial showed that EV significantly prolonged the overall survival compared with classic chemotherapy. The TROPHY-U-01 trial conducted to evaluate SG demonstrated promising results as regards the objective response rate and duration of response. The safety and efficacy of ADCs in monotherapy and polytherapy (mainly with iCPIs) for different cancer stages and tumor types are assessed in numerous ongoing clinical trials. The aim of this review is to present new molecular biomarkers, specific mechanisms of action, and ongoing clinical trials of ADCs in genitourinary cancers. In the expert discussion, we assess the place of ADCs in uro-oncology and discuss their clinical value.


Assuntos
Antineoplásicos , Carcinoma de Células de Transição , Imunoconjugados , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Ensaios Clínicos como Assunto , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Masculino
7.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299090

RESUMO

The compounds 7-ethyl-9-(N-methylamino)methyl-10-hydroxycamptothecin (2) and 7-ethyl-9-(N-morpholino)methyl-10-hydroxycamptothecin (3) are potential topoisomerase I poisons. Moreover, they were shown to have favorable anti-neoplastic effects on several tumor cell lines. Due to these properties, the compounds are being considered for advancement to the preclinical development stage. To gain better insights into the molecular mechanism with the biological target, here, we conducted an investigation into their interactions with model nicked DNA (1) using different techniques. In this work, we observed the complexity of the mechanism of action of the compounds 2 and 3, in addition to their decomposition products: compound 4 and SN38. Using DOSY experiments, evidence of the formation of strongly bonded molecular complexes of SN38 derivatives with DNA duplexes was provided. The molecular modeling based on cross-peaks from the NOESY spectrum also allowed us to assign the geometry of a molecular complex of DNA with compound 2. Confirmation of the alkylation reaction of both compounds was obtained using MALDI-MS. Additionally, in the case of 3, alkylation was confirmed in the recording of cross-peaks in the 1H/13C HSQC spectrum of 13C-enriched compound 3. In this work, we showed that the studied compounds-parent compounds 2 and 3, and their potential metabolite 4 and SN38-interact inside the nick of 1, either forming the molecular complex or alkylating the DNA nitrogen bases. In order to confirm the influence of the studied compounds on the topoisomerase I relaxation activity of supercoiled DNA, the test was performed based upon the measurement of the fluorescence of DNA stain which can differentiate between supercoiled and relaxed DNA. The presented results confirmed that studied SN38 derivatives effectively block DNA relaxation mediated by Topo I, which means that they stop the machinery of Topo I activity.


Assuntos
Camptotecina/análogos & derivados , Camptotecina/metabolismo , Quebras de DNA de Cadeia Simples , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal , Inibidores da Topoisomerase II/farmacologia , Alquilação , Humanos
8.
Molecules ; 26(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069385

RESUMO

Combination therapy is based on the beneficial effects of pharmacodynamic interaction (synergistic or additive) between combined drugs or substances. A considerable group of candidates for combined treatments are natural compounds (e.g., isothiocyanates) and their analogs, which are tested in combination with anticancer drugs. We tested the anticancer effect of the combined treatment of isothiocyanate 2-oxohexyl isothiocyanate and 5-fluorouracil in colon and prostate cancer cell lines. The type of interaction was described using the Chou-Talalay method. The cytostatic and cytotoxic activities of the most promising combined treatments were investigated. In conclusion, we showed that combined treatment with 5-fluorouracil and 2-oxohexyl isothiocyanate acted synergistically in colon cancer. This activity is dependent on the cytostatic properties of the tested compounds and leads to the intensification of their individual cytotoxic activity. The apoptotic process is considered to be the main mechanism of cytotoxicity in this combined treatment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Fluoruracila/farmacologia , Isotiocianatos/farmacologia , Sulfóxidos/farmacologia , Tiocianatos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Técnicas In Vitro , Isotiocianatos/química , Modelos Biológicos , Sulfóxidos/química , Tiocianatos/química
9.
Bioorg Med Chem Lett ; 46: 128146, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048881

RESUMO

Derivatives of SN38 were synthesized that were either monosubstituted at C-5 or C-9 or disubstituted at both C-5 and C-9. Substitution to C-5 led to the generation of pairs of diastereomers (2c-2 h) in a one-pot reaction and was readily separable by HPLC. The absolute configurations of C-5 were established by electronic circular dichroism experiments. Compounds were tested in vitro against human cancer cell lines as well as a normal cell line. The impact of compounds 2a-2j on cancer cells is significant and the IC50 values against the normal cell line are several times higher than that of SN38. Using the Mannich reaction we obtained a new innovative group of derivatives with unique biological properties that preserves the high cytotoxicity in cancer cells and eliminates the acute toxicity to non-neoplastic cells, which can be considered a breakthrough in chemotherapy with the use of topoisomerase I inhibitors from the camptothecin family.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Camptotecina/síntese química , Camptotecina/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
10.
Nutrients ; 12(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471217

RESUMO

Breast cancer is the most prevalent type of cancer among women worldwide. There are several recommended methods of breast cancer prevention, including chemoprevention. There are several approved drugs used to prevent breast cancer occurrence or recurrence and metastasizing. There are also a number of new substances undergoing clinical trials and at the stage of initial study. Studies suggest that dietary factors play a crucial role in breast cancer etiology. Epidemiological studies indicate that in particular vegetables from the Brassicaceae family are a rich source of chemopreventive substances, with sulforaphane (SFN) being one of the most widely studied and characterized. This review discusses potential applicability of SFN in breast cancer chemoprevention. A comprehensive review of the literature on the impact of SFN on molecular signalling pathways in breast cancer and breast untransformed cells is presented. The presented results of in vitro and in vivo studies show that this molecule has a potential to act as a preventive molecule either to prevent disease development or recurrence and metastasizing, and as a compound protecting normal cells against the toxic effects of cytostatics. Finally, the still scanty attempts to develop an improved analog are also presented and discussed.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/prevenção & controle , Isotiocianatos/química , Isotiocianatos/farmacologia , Animais , Brassicaceae/química , Neoplasias da Mama/epidemiologia , Quimioprevenção , Feminino , Humanos , Recidiva Local de Neoplasia/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos , Verduras/química
11.
Nanotechnology ; 31(5): 055603, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31618725

RESUMO

A new method for the fabrication of flower-like tellurium nanoparticles is reported. It is based on the reduction of tellurite precursor by products generated during decomposition of sulforaphane at elevated temperature in aqueous medium. These species and other organic molecules present in the reaction mixture are being adsorbed on the surface of tellurium nuclei and govern further tellurium growth in the form of nanoflowers. The obtained particles have been characterized by a range of physicochemical techniques. It was shown that the average size of the nanoflower particles is ca. 112 nm, and they are composed of smaller domains which are ca. 30 nm in diameter. The domains are crystalline and consist of trigonal tellurium as shown by x-ray diffraction, Raman spectroscopy and high resolution transmission electron microscopy. The tellurium nanoflowers were examined from the perspective of their potential anticancer activity. The in vitro cell viability studies were conducted on breast cancer (MDA-MB-231, MCF-7) and normal cell lines (MCF-10A) employing MTT and CVS assays. It was shown, that the nanoflowers exhibit considerable cytotoxicity against cancer cells which is ca. 3-7 times higher than that observed for reference normal cells. The preliminary in vivo investigations on rats revealed that the nanoflowers accumulate predominantly in pancreas after intraperitoneal administration, without observable negative behavioral effects.

12.
Bioorg Chem ; 94: 103454, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31787344

RESUMO

A series of new sulforaphane analogs bearing various (poly)fluoroaryl substituents bonded to the sulfinyl sulfur atom in place of the original methyl group and having different number of methylene groups in the central alkyl chain were synthesized and fully characterized. The new compounds were tested in vitro for their anticancer, antibacterial, antifungal and antiviral properties. Some of them demonstrated a much higher anticancer activity against selected lines of cancer: skin (MALME-3M), colon (HT-29) and breast (MCF7 and MDA-MB-231) cells than that exhibited by native sulforaphane (SFN). Related lines of untransformed (normal) cells, taken from the same organs as the cancer ones, i.e. MALME3, CRL-1790 and MCF10, respectively, were checked, which allowed for the determination of the selectivity indexes (SI). In certain cases, the latter exceeded 3.2. Concerning the antibacterial activity, gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) were susceptible to some newly synthesized SFN analogs, while the selected probiotic strains were from 10 to 100 fold more resistant to them, which gives a possibility of protection of symbiont strains during a potential therapy with such compounds. The antifungal activity of the new compounds possessing the fluorophenyl substituent was found to be higher than the activity of the parent SFN. In turn, most of the new compounds showed generally no anti-HIV activity. The influence of the particular structural differences in the new molecules, analogs of SFN, on their biological activity is discussed.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Isotiocianatos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Aspergillus/efeitos dos fármacos , Candida/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Isotiocianatos/síntese química , Isotiocianatos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Sulfóxidos
13.
Mater Sci Eng C Mater Biol Appl ; 97: 768-775, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678966

RESUMO

Hybrid composite bioparticles modified with stable and radioactive gold nanoparticles were prepared via reduction of tetrachloroauric acid within Lactobacillus rhamnosus cells. The resulting biocomposite material was characterized using a number of physicochemical techniques, including microscopic, spectroscopic and thermal methods. The bacterial particles act as a type of template for gold deposition. Gold nanoparticles of approximately 3.7 nm diameter are formed and are uniformly distributed within the bacterial cell, including its hydrogel outer shell. For radioactive gold-198, the ß- radiation emitted from the biocomposite particles can be used for therapeutic purposes, as demonstrated in vitro in cancer cell cultures. The antitumor activity can be further enhanced by incorporation of doxorubicin, a cytostatic drug, within composite particles. The cell viability data indicate the considerable synergistic effect of ß- radiation and doxorubicin on breast cancer cells (MCF-7). The antitumor action of the biocomposite particles is very promising for new anticancer therapies.


Assuntos
Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Partículas beta , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Lactobacillus/química , Lactobacillus/metabolismo , Células MCF-7 , Microscopia Confocal , Oxirredução , Tamanho da Partícula
14.
Int J Pharm ; 558: 311-318, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30641176

RESUMO

A new combination of sulforaphane (a natural compound obtained from Brassicaceae vegetables) and the cytostatic drug doxorubicin was entrapped in nanometer-sized liposomes. In vitro experiments were performed to investigate the cytotoxicity of these structures on the human breast cancer cell line MDA-MB-231. Confocal microscopy studies revealed enhanced cellular endocytotic internalization, followed by the release of the examined combination from the lysosomes. The in vitro interaction analysis using the Chou-Talalay approach showed high synergistic activity of the examined combination. This synergistic activity enables a considerable reduction in cytostatic dosage and an increase in cancer treatment efficiency.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Anticarcinógenos/administração & dosagem , Doxorrubicina/administração & dosagem , Isotiocianatos/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Lipossomos , Sulfóxidos
15.
Nanotechnology ; 30(6): 065101, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30523968

RESUMO

Sulforaphane-modified selenium nanoparticles can be prepared in a simple aqueous-phase redox reaction through reduction of selenite with ascorbic acid. The sulforaphane molecules present in the reaction mixture adsorb on the nanoparticle surface, forming an adlayer. The resulting conjugate was examined with several physicochemical techniques, including microscopy, spectroscopy, x-ray diffraction, dynamic light scattering and zeta potential measurements. As shown in in vivo investigations on rats, the nanomaterial administered intraperitoneally is eliminated mainly in urine (and, to a lesser extent, in feces); however, it is also retained in the body. The modified nanoparticles mainly accumulate in the liver, but the basic parameters of blood and urine remain within normal limits. The sulforaphane-conjugated nanoparticles reveal considerable anticancer action, as demonstrated on several cancer cell cultures in vitro. This finding is due to the synergistic effect of elemental selenium and sulforaphane molecules assembled in one nanostructure (conjugate). On the other hand, the cytotoxic action on normal cells is relatively low. The high antitumor activity and selectivity of the conjugate with respect to diseased and healthy cells is extremely promising from the point of view of cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Isotiocianatos/farmacologia , Selênio/farmacologia , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Masculino , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Ratos Wistar , Selênio/urina , Análise Espectral Raman , Sulfóxidos , Distribuição Tecidual/efeitos dos fármacos , Difração de Raios X
16.
Molecules ; 23(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469330

RESUMO

Isothiocyanates (R-NCS) are sulphur-containing phytochemicals. The main source are plants of the Brassicaceae family. The best known plant-derived isothiocyanate is sulforaphane that has exhibited anticancer activity in both in vivo and in vitro studies. Recent attempts to expand their use in cancer therapy involve combining them with standard chemotherapeutics in order to increase their therapeutic efficacy. The aim of this paper is to determine the impact of sulforaphane and its natural analog alyssin on the anticancer activity of the well-known anticancer drug 5-fluorouracil. The type of drug-drug interactions was determined in prostate and colon cancer cell lines. Confocal microscopy, western blot and flow cytometry methods were employed to determine the mechanism of cytotoxic and cytostatic action of the combinations. The study revealed that additive or synergistic interactions were observed between 5-fluorouracil and both isothiocyanates, which enhanced the anticancer activity of 5-fluorouracil, particularly in colon cancer cell lines. An increased cytostatic effect was observed in case of alyssin while for sulforaphane the synergistic interaction with 5-fluorouracil involved an intensification of apoptotic cell death.


Assuntos
Antineoplásicos/farmacologia , Citostáticos/farmacologia , Fluoruracila/farmacologia , Isotiocianatos/farmacologia , Neoplasias/metabolismo , Tiocianatos/farmacologia , Células CACO-2 , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Técnicas In Vitro , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos
17.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347655

RESUMO

Here we present new derivatives of nucleoside reverse transcriptase inhibitors with a C20 fullerene. The computational chemistry methods used in this study evaluate affinity of designed compounds towards the HIV-1 reverse transcriptase (RT) binding site and select the most active ones. The best of the designed compounds have superior or similar affinity to RT active site in comparison to most active test compounds, including drugs used in anti-HIV therapy.


Assuntos
Antivirais/química , Inibidores Enzimáticos/química , Fulerenos/química , Transcriptase Reversa do HIV/antagonistas & inibidores , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Transcriptase Reversa do HIV/química , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 195: 148-156, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29414572

RESUMO

Fabrication of multifunctional smart vehicles for drug delivery is a fascinating challenge of multidisciplinary research at the crossroads of materials science, physics and biology. We demonstrate a prototypical microcapsule system that is capable of encapsulating hydrophobic molecules and at the same time reveals magnetic properties. The microcapsules are prepared using a templated synthesis approach where the molecules to be encapsulated (Nile Red) are present in the organic droplets that are suspended in the polymerization solution which also contains magnetic nanoparticles. The polymer (polypyrrole) grows on the surface of organic droplets encapsulating the fluorescent dye in the core of the formed microcapsule which incorporates the nanoparticles into its wall. For characterization of the resulting structures a range of complementary physicochemical methodology is used including optical and electron microscopy, magnetometry, 1H NMR and spectroscopy in the visible and X-ray spectral ranges. Moreover, the microcapsules have been examined in biological environment in in vitro and in vivo studies.


Assuntos
Cápsulas/química , Colo/efeitos dos fármacos , Corantes Fluorescentes/química , Magnetismo , Oxazinas/química , Polímeros/química , Sistema Respiratório/efeitos dos fármacos , Animais , Cápsulas/administração & dosagem , Corantes Fluorescentes/administração & dosagem , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Oxazinas/administração & dosagem , Ratos , Ratos Wistar
20.
Food Chem Toxicol ; 111: 1-8, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29104175

RESUMO

In view of the need for new, more effective therapies for the triple negative breast cancer treatment, the aim of the study was to evaluate the anticancer activity and mechanism of action of the sulforaphane and 5-fluorouracil combination in the triple negative breast cancer cell line MDA-MB-231. Changes in the number of live cells after alone and sequential treatment were determined by the MTT test. The Chou and Talaly method was used to identify the type of interaction. Confocal microscopy, flow cytometry, western blot and spectrophotometry were used to examine apoptosis, autophagy and premature senescence. The western blot method was applied to measure the level of enzymes that are crucial for the 5-fluorouracil activity. Sulforaphane and 5-fluorouracil have been shown to interact synergistically in the breast cancerMDA-MB-231 cell line, resulting in a significant reduction of the number of live cells compared to alone treatments. Sulforaphane has decreased the level of thymidylate synthetase, which was also observed in the case of the sequential sulforaphane and 5-fluorouracil treatment. Studies of the interaction mechanism have revealed that sulforaphane and 5-fluorouracil act synergistically in the MDA-MB-231 cells by inducing autophagic cell death and premature senescence.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Fluoruracila/farmacologia , Isotiocianatos/farmacologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Fluoruracila/administração & dosagem , Humanos , Isotiocianatos/administração & dosagem , Sulfóxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA