Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bone ; 168: 116650, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584784

RESUMO

The circadian clock system regulates multiple metabolic processes, including bone metabolism. Previous studies have demonstrated that both central and peripheral circadian signaling regulate skeletal growth and homeostasis in mice. Disruption in central circadian rhythms has been associated with a decline in bone mineral density in humans and the global and osteoblast-specific disruption of clock genes in bone tissue leads to lower bone mass in mice. Gut physiology is highly sensitive to circadian disruption. Since the gut is also known to affect bone remodeling, we sought to test the hypothesis that circadian signaling disruption in colon epithelial cells affects bone. We therefore assessed structural, functional, and cellular properties of bone in 8 week old Ts4-Cre and Ts4-Cre;Bmal1fl/fl (cBmalKO) mice, where the clock gene Bmal1 is deleted in colon epithelial cells. Axial and appendicular trabecular bone volume was significantly lower in cBmalKO compared to Ts4-Cre 8-week old mice in a sex-dependent fashion, with male but not female mice showing the phenotype. Similarly, the whole bone mechanical properties were deteriorated in cBmalKO male mice. The tissue level mechanisms involved suppressed bone formation with normal resorption, as evidenced by serum markers and dynamic histomorphometry. Our studies demonstrate that colon epithelial cell-specific deletion of Bmal1 leads to failure to acquire trabecular and cortical bone in male mice.


Assuntos
Relógios Circadianos , Osteogênese , Humanos , Animais , Masculino , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/genética , Células Epiteliais/metabolismo , Camundongos Knockout
2.
Inflamm Bowel Dis ; 29(3): 444-457, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36287037

RESUMO

BACKGROUND: Disruption of central circadian rhythms likely mediated by changes in microbiota and a decrease in gut-derived metabolites like short chain fatty acids (SCFAs) negatively impacts colonic barrier homeostasis. We aimed to explore the effects of isolated peripheral colonic circadian disruption on the colonic barrier in a mouse model of colitis and explore the mechanisms, including intestinal microbiota community structure and function. METHODS: Colon epithelial cell circadian rhythms were conditionally genetically disrupted in mice: TS4Cre-BMAL1lox (cBMAL1KO) with TS4Cre as control animals. Colitis was induced through 5 days of 2% dextran sulfate sodium (DSS). Disease activity index and intestinal barrier were assessed, as were fecal microbiota and metabolites. RESULTS: Colitis symptoms were worse in mice with peripheral circadian disruption (cBMAL1KO). Specifically, the disease activity index and intestinal permeability were significantly higher in circadian-disrupted mice compared with control animals (TS4Cre) (P < .05). The worsening of colitis appears to be mediated, in part, through JAK (Janus kinase)-mediated STAT3 (signal transducer and activator of transcription 3), which was significantly elevated in circadian-disrupted (cBMAL1KO) mice treated with DSS (P < .05). Circadian-disrupted (cBMAL1KO) mice also had decreased SCFA metabolite concentrations and decreased relative abundances of SCFA-producing bacteria in their stool when compared with control animals (TS4Cre). CONCLUSIONS: Disruption of intestinal circadian rhythms in colonic epithelial cells promoted more severe colitis, increased inflammatory mediators (STAT3 [signal transducer and activator of transcription 3]), and decreased gut microbiota-derived SCFAs compared with DSS alone. Further investigation elucidating the molecular mechanisms behind these findings could provide novel circadian directed targets and strategies in the treatment of inflammatory bowel disease.


Disruption of peripheral circadian rhythms of the colon epithelium results in worse colitis and increased intestinal permeability in mice when given dextran sulfate sodium. This may be mediated through alterations in microbiota, butyrate levels, and STAT3.


Assuntos
Colite , Fator de Transcrição STAT3 , Camundongos , Animais , Sulfato de Dextrana/efeitos adversos , Fator de Transcrição STAT3/metabolismo , Colite/induzido quimicamente , Colo/metabolismo , Fezes , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Front Neurol ; 13: 882628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665034

RESUMO

Introduction: Parkinson's disease (PD) is the second most common neurodegenerative disease associated with aging. PD patients have systemic and neuroinflammation which is hypothesized to contribute to neurodegeneration. Recent studies highlight the importance of the gut-brain axis in PD pathogenesis and suggest that gut-derived inflammation can trigger and/or promote neuroinflammation and neurodegeneration in PD. However, it is not clear whether microbiota dysbiosis, intestinal barrier dysfunction, or intestinal inflammation (common features in PD patients) are primary drivers of disrupted gut-brain axis in PD that promote neuroinflammation and neurodegeneration. Objective: To determine the role of microbiota dysbiosis, intestinal barrier dysfunction, and colonic inflammation in neuroinflammation and neurodegeneration in a genetic rodent model of PD [α-synuclein overexpressing (ASO) mice]. Methods: To distinguish the role of intestinal barrier dysfunction separate from inflammation, low dose (1%) dextran sodium sulfate (DSS) was administered in cycles for 52 days to ASO and control mice. The outcomes assessed included intestinal barrier integrity, intestinal inflammation, stool microbiome community, systemic inflammation, motor function, microglial activation, and dopaminergic neurons. Results: Low dose DSS treatment caused intestinal barrier dysfunction (sugar test, histological analysis), intestinal microbiota dysbiosis, mild intestinal inflammation (colon shortening, elevated MPO), but it did not increase systemic inflammation (serum cytokines). However, DSS did not exacerbate motor dysfunction, neuroinflammation (microglial activation), or dopaminergic neuron loss in ASO mice. Conclusion: Disruption of the intestinal barrier without overt intestinal inflammation is not associated with worsening of PD-like behavior and pathology in ASO mice.

4.
PLoS One ; 16(6): e0251604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086699

RESUMO

BACKGROUND: Physiological circadian rhythms (CRs) are complex processes with 24-hour oscillations that regulate diverse biological functions. Chronic weekly light/dark (LD) shifting (CR disruption; CRD) in mice results in colonic hyperpermeability. However, the mechanisms behind this phenomenon are incompletely understood. One potential innovative in vitro method to study colonic CRs are colon organoids. The goals of this study were to utilize circadian clock gene Per2 luciferase reporter (Per2::Luc) mice to measure the effects of chronic LD shifting on colonic tissue circadian rhythmicity ex vivo and to determine if organoids made from shifted mice colons recapitulate the in vivo phenotype. METHODS: Non-shifted (NS) and shifted (S) BL6 Per2::Luc mice were compared after a 22-week experiment. NS mice had a standard 12h light/12h dark LD cycle throughout. S mice alternated 12h LD patterns weekly, with light from 6am-6pm one week followed by shifting light to 6pm-6am the next week for 22 weeks. Mice were tested for intestinal permeability while colon tissue and organoids were examined for CRs of bioluminescence and proteins of barrier function and cell fate. RESULTS: There was no absolute difference in NS vs. S 24h circadian period or phase. However, chronic LD shifting caused Per2::Luc S mice colon tissue to exhibit significantly greater variability in both the period and phase of Per2::Luc rhythms than NS mice colon tissue and organoids. Chronic LD shifting also resulted in increased colonic permeability of the Per2::Luc mice as well as decreased protein markers of intestinal permeability in colonic tissue and organoids from shifted Per2:Luc mice. CONCLUSIONS: Our studies support a model in which chronic central circadian disruption by LD shifting alters the circadian phenotype of the colon tissue and results in colon leakiness and loss of colonic barrier function. These CRD-related changes are stably expressed in colon stem cell derived organoids from CRD mice.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Colo/fisiopatologia , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Humanos , Intestinos/fisiopatologia , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/genética , Atividade Motora/fisiologia , Proteínas Circadianas Period/genética , Permeabilidade , Fotoperíodo , Núcleo Supraquiasmático/fisiopatologia
5.
Transl Res ; 231: 113-123, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33221482

RESUMO

Obesity has become a common rising health care problem, especially in "modern" societies. Obesity is considered a low-grade systemic inflammation, partly linked to leaky gut. Circadian rhythm disruption, a common habit in modern life, has been reported to cause gut barrier impairment. Abnormal time of eating, defined by eating close to or during rest time, is shown to cause circadian rhythm disruption. Here, using a non-obesogenic diet, we found that abnormal feeding time facilitated weight gain and induced metabolic dysregulation in mice. The effect of abnormal time of eating was associated with increased gut permeability, estimated by sucralose and/or lactulose ratio and disrupted intestinal barrier marker. Analysis of gut microbiota and their metabolites, as important regulators of barrier homeostasis, revealed that abnormal food timing reduced relative abundance of butyrate-producing bacteria, and the colonic butyrate level. Overall, our data supported that dysbiosis was characterized by increased intestinal permeability and decreased beneficial barrier butyrate-producing bacteria and/or metabolite to mechanistically link the time of eating to obesity. This data provides basis for noninvasive microbial-targeted interventions to improve intestinal barrier function as new opportunities for combating circadian rhythm disruption induced metabolic dysfunction.


Assuntos
Criação de Animais Domésticos , Ritmo Circadiano , Microbioma Gastrointestinal , Obesidade/metabolismo , Aumento de Peso , Animais , Biomarcadores , Glicemia , Caderinas/metabolismo , Colo/metabolismo , Alimentos , Glucose/metabolismo , Insulina/sangue , Insulina/metabolismo , Leptina/sangue , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Fatores de Tempo
6.
Cell Mol Gastroenterol Hepatol ; 9(2): 219-237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31689559

RESUMO

BACKGROUND & AIMS: Alcohol intake with circadian rhythm disruption (CRD) increases colon cancer risk. We hypothesized that eating during or around physiologic rest time, a common habit in modern society, causes CRD and investigated the mechanisms by which it promotes alcohol-associated colon carcinogenesis. METHODS: The effect of feeding time on CRD was assessed using B6 mice expressing a fusion protein of PERIOD2 and LUCIFERASE (PER2::LUC) were used to model colon polyposis and to assess the effects of feeding schedules, alcohol consumption, and prebiotic treatment on microbiota composition, short-chain fatty acid levels, colon inflammation, and cancer risk. The relationship between butyrate signaling and a proinflammatory profile was assessed by inactivating the butyrate receptor GPR109A. RESULTS: Eating at rest (wrong-time eating [WTE]) shifted the phase of the colon rhythm in PER2::LUC mice. In TS4Cre × APClox468 mice, a combination of WTE and alcohol exposure (WTE + alcohol) decreased the levels of short-chain fatty acid-producing bacteria and of butyrate, reduced colonic densities of regulatory T cells, induced a proinflammatory profile characterized by hyperpermeability and an increased mucosal T-helper cell 17/regulatory T cell ratio, and promoted colorectal cancer. Prebiotic treatment improved the mucosal inflammatory profile and attenuated inflammation and cancer. WTE + alcohol-induced polyposis was associated with increased signal transducer and activator of transcription 3 expression. Decreased butyrate signaling activated the epithelial signal transducer and activator of transcription 3 in vitro. The relationship between butyrate signaling and a proinflammatory profile was confirmed in human colorectal cancers using The Cancer Genome Atlas. CONCLUSIONS: Abnormal timing of food intake caused CRD and interacts with alcohol consumption to promote colon carcinogenesis by inducing a protumorigenic inflammatory profile driven by changes in the colon microbiota and butyrate signaling. Accession number of repository for microbiota sequence data: raw FASTQ data were deposited in the NCBI Sequence Read Archive under project PRJNA523141.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Ritmo Circadiano/fisiologia , Neoplasias Associadas a Colite/patologia , Pólipos do Colo/etiologia , Comportamento Alimentar/fisiologia , Animais , Butiratos/metabolismo , Carcinogênese/imunologia , Carcinogênese/patologia , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Neoplasias Associadas a Colite/etiologia , Colo/imunologia , Colo/patologia , Pólipos do Colo/patologia , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/patologia , Etanol/administração & dosagem , Etanol/toxicidade , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade nas Mucosas/fisiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Circadianas Period/genética , Fotoperíodo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Tempo
7.
Alcohol Clin Exp Res ; 43(9): 1898-1908, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31237690

RESUMO

BACKGROUND: Alcohol intake increases the risk of developing colon cancer. Circadian disruption promotes alcohol's effect on colon carcinogenesis through unknown mechanisms. Alcohol's metabolites induce DNA damage, an early step in carcinogenesis. We assessed the effect of time of alcohol consumption on markers of tissue damage in the colonic epithelium. METHODS: Mice were treated by alcohol or phosphate-buffered saline (PBS), at 4-hour intervals for 3 days, and their colons were analyzed for (i) proliferation (Ki67) and antiapoptosis (Bcl-2) markers, (ii) DNA damage (γ-H2AX), and (iii) the major acetaldehyde (AcH)-DNA adduct, N2 -ethylidene-dG. To model circadian disruption, mice were shifted once weekly for 12 h and then were sacrificed at 4-hour intervals. Samples of mice with a dysfunctional molecular clock were analyzed. The dynamics of DNA damage repair from AcH treatment as well as role of xeroderma pigmentosum, complementation group A (XPA) in their repair were studied in vitro. RESULTS: Proliferation and survival of colonic epithelium have daily rhythmicity. Alcohol induced colonic epithelium proliferation in a time-dependent manner, with a stronger effect during the light/rest period. Alcohol-associated DNA damage also occurred more when alcohol was given at light. Levels of DNA adduct did not vary by time, suggesting rather lower repair efficiency during the light versus dark. XPA gene expression, a key excision repair gene, was time-dependent, peaking at the beginning of the dark. XPA knockout colon epithelial cells were inefficient in repair of the DNA damage induced by alcohol's metabolite. CONCLUSIONS: Time of day of alcohol intake may be an important determinant of colon tissue damage and carcinogenicity.


Assuntos
Depressores do Sistema Nervoso Central/efeitos adversos , Ritmo Circadiano , Colo/efeitos dos fármacos , Etanol/efeitos adversos , Mucosa Intestinal/efeitos dos fármacos , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Animais , Depressores do Sistema Nervoso Central/metabolismo , Dano ao DNA , Etanol/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fatores de Tempo
8.
Genes (Basel) ; 9(2)2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29462896

RESUMO

Epidemiological studies propose a protective role for dietary fiber in colon cancer (CRC). One possible mechanism of fiber is its fermentation property in the gut and ability to change microbiota composition and function. Here, we investigate the role of a dietary fiber mixture in polyposis and elucidate potential mechanisms using TS4Cre×cAPCl°x468 mice. Stool microbiota profiling was performed, while functional prediction was done using PICRUSt. Stool short-chain fatty acid (SCFA) metabolites were measured. Histone acetylation and expression of SCFA butyrate receptor were assessed. We found that SCFA-producing bacteria were lower in the polyposis mice, suggesting a decline in the fermentation product of dietary fibers with polyposis. Next, a high fiber diet was given to polyposis mice, which significantly increased SCFA-producing bacteria as well as SCFA levels. This was associated with an increase in SCFA butyrate receptor and a significant decrease in polyposis. In conclusion, we found polyposis to be associated with dysbiotic microbiota characterized by a decline in SCFA-producing bacteria, which was targetable by high fiber treatment, leading to an increase in SCFA levels and amelioration of polyposis. The prebiotic activity of fiber, promoting beneficial bacteria, could be the key mechanism for the protective effects of fiber on colon carcinogenesis. SCFA-promoting fermentable fibers are a promising dietary intervention to prevent CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA