Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(4): e0060323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38517165

RESUMO

Herpesviruses replicate by cleaving concatemeric dsDNA into single genomic units that are packaged through an oligomeric portal present in preformed procapsids. In contrast to what is known about phage portal proteins, details concerning herpesvirus portal structure and function are not as well understood. A panel of 65 Varicella-Zoster virus (VZV) recombinant portal proteins with five amino acid in-frame insertions were generated by random transposon mutagenesis of the VZV portal gene, ORF54. Subsequently, 65 VZVLUC recombinant viruses (TNs) were generated via recombineering. Insertions were mapped to predicted portal domains (clip, wing, stem, wall, crown, and ß-hairpin tunnel-loop) and recombinant viruses were characterized for plaque morphology, replication kinetics, pORF54 expression, and classified based on replication in non-complementing (ARPE19) or complementing (ARPE54C50) cell lines. The N- and C-termini were tolerant to insertion mutagenesis, as were certain clip sub-domains. The majority of mutants mapping to the wing, wall, ß-hairpin tunnel loop, and stem domains were lethal. Elimination of the predicted ORF54 start codon revealed that the first 40 amino acids of the N-terminus were not required for viral replication. Stop codon insertions in the C-terminus showed that the last 100 amino acids were not required for viral replication. Lastly, a putative protease cleavage site was identified in the C-terminus of pORF54. Cleavage was likely orchestrated by a viral protease; however, processing was not required for DNA encapsidation and viral replication. The panel of recombinants should prove valuable in future studies to dissect mammalian portal structure and function.IMPORTANCEThough nucleoside analogs and a live-attenuated vaccine are currently available to treat some human herpesvirus family members, alternate methods of combating herpesvirus infection could include blocking viral replication at the DNA encapsidation stage. The approval of Letermovir provided proof of concept regarding the use of encapsidation inhibitors to treat herpesvirus infections in the clinic. We propose that small-molecule compounds could be employed to interrupt portal oligomerization, assembly into the capsid vertex, or affect portal function/dynamics. Targeting portal at any of these steps would result in disruption of viral DNA packaging and a decrease or absence of mature infectious herpesvirus particles. The oligomeric portals of herpesviruses are structurally conserved, and therefore, it may be possible to find a single compound capable of targeting portals from one or more of the herpesvirus subfamilies. Drug candidates from such a series would be effective against viruses resistant to the currently available antivirals.


Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 3 , Animais , Humanos , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/metabolismo , Mutagênese , Replicação Viral , Infecções por Herpesviridae/genética , DNA/metabolismo , Aminoácidos/genética , Mamíferos/genética
2.
Methods Mol Biol ; 1982: 191-229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172474

RESUMO

The identification of NADPH oxidase (NOX) isoforms in tissues is essential for interpreting experiments and for next step decisions regarding cell lines, animal models, and targeted drug design. Two basic methods, immunoblotting and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), are important to monitor NOX protein and messenger RNA (mRNA) levels, respectively, for a range of investigations from understanding cell signaling events to judging NOX inhibitor efficacies. For many other genes that are expressed in high abundance, these methods may seem rather simple. However, detecting the low expression levels of endogenous NOX/DUOX is difficult and can be frustrating, so some guidelines would be helpful to those who are facing difficulties. One reason why detection is so difficult is the limited availability of vetted NOX/DUOX antibodies. Many of the commercial antibodies do not perform well in our hands, and dependable antibodies, often generated by academic laboratories, are in limited supply. Another problem is the growing trend in the NOX literature to omit end-user validation of antibodies by not providing appropriate positive and negative controls. With regard to NOX mRNA levels, knockdown of NOX/DUOX has been reported in cell lines with very low endogenous expression (C q values ≥30) or in cell lines devoid of the targeted NOX isoform (e.g., NOX4 expression in NCI-60 cancer cell panel cell line 786-0). These publications propagate misinformation and hinder progress in understanding NOX/DUOX function. This chapter provides overdue guidelines on how to validate a NOX antibody and provides general methodologies to prepare samples for optimal detection. It also includes validated methodology to perform RT-qPCR for the measurement of NOX mRNA levels, and we suggest that RT-qPCR should be performed prior to embarking on NOX protein detection.


Assuntos
Immunoblotting , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Animais , Linhagem Celular , Ativação Enzimática , Guias como Assunto , Humanos , Immunoblotting/métodos , Isoenzimas , Cinética , NADPH Oxidases/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA