Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(24): 10967-10979, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38832535

RESUMO

A series of iso-carbamate complexes have been synthesized by the reaction of [SnII(OiPr)2] or [SnII(OtBu)2] with either aryl or alkyl isocyanates, ONC-R (R = 2,4,6-trimethylphenyl (Mes), 2,6-diisopropylphenyl (Dipp), isopropyl (iPr), cyclohexyl (Cy) and tert-butyl (tBu)). In the case of aryl isocyanates, mono-insertion occurs to form structurally characterized complexes [Sn{κ2-N,O-R-NC(OiPr)O}(µ-OiPr)]2 (1: R = Mes, 2: R = Dipp) and [Sn{κ2-N,O-R-NC(OtBu)O}(µ-OtBu)]2 (3: R = Mes, 4: R = Dipp). The complicated solution-state chemistry of these species has been explored using 1H DOSY experiments. In contrast, reactions of tin(II) alkoxides with alkyl isocyanates result in the formation of bis-insertion products [Sn{κ2-N,O-R-NC(OiPr)O}2] (5: R = iPr, and 6: R = Cy) and [Sn{κ2-N,O-R-NC(OtBu)O}2] (7: R = iPr, 8: R = Cy), of which complexes 6-8 have also been structurally characterized. 1H NMR studies show that the reaction of tBu-NCO with either [Sn(OiPr)2] or [Sn(OtBu)2] results in a reversible mono-insertion. Variable-temperature 2D 1H-1H exchange spectroscopy (VT-2D-EXSY) was used to determine the rate of exchange between free tBu-NCO and the coordinated tBu-iso-carbamate ligand for the {OiPr} alkoxide complex, as well as the activation energy (Ea = 92.2 ± 0.8 kJ mol-1), enthalpy (ΔH‡ = 89.4 ± 0.8 kJ mol-1), and entropy (ΔS‡ = 12.6 ± 2.9 J mol-1 K-1) for the process [Sn(OiPr)2] + tBu-NCO ↔ [Sn{κ2-N,O-tBu-NC(OiPr)O}(OiPr)]. Attempts to form Sn(II) alkyl carbonates by the insertion of CO2 into either [Sn(OiPr)2] or [Sn(OtBu)2] proved unsuccessful. However, 119Sn{1H} NMR spectroscopy of the reaction of excess CO2 with [Sn(OiPr)2] reveals the presence of a new Sn(II) species, i.e., [(iPrO)Sn(O2COiPr)], VT-2D-EXSY (1H) of which confirms the reversible alkyl carbonate formation (Ea = 70.3 ± 13.0 kJ mol-1; ΔH‡ = 68.0 ± 1.3 kJ mol-1 and ΔS‡ = -8.07 ± 2.8 J mol-1 K-1).

2.
Inorg Chem ; 60(22): 17083-17093, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704441

RESUMO

In an attempt to tailor precursors for application in the deposition of phase pure SnO, we have evaluated a series of tin (1-6) ureide complexes. The complexes were successfully synthesized by employing N,N'-trialkyl-functionalized ureide ligands, in which features such as stability, volatility, and decomposition could be modified with variation of the substituents on the ureide ligand in an attempt to find the complex with the ideal electronic, steric, or coordinative properties, which determine the fate of the final products. The tin(II) ureide complexes 1-6 were synthesized by direct reaction [Sn{NMe2}2] with aryl and alkyl isocyanates in a 1:2 molar ratio. All the complexes were characterized by NMR spectroscopy as well as elemental analysis and, where applicable, thermogravimetric (TG) analysis. The single-crystal X-ray diffraction studies of 2, 3, 4, and 6 revealed that the complexes crystallize in the monoclinic space group P2(1)/n (2 and 4) or in the triclinic space group P-1 (3 and 6) as monomers. Reaction with phenyl isocyanate results in the formation of the bimetallic species 5, which crystallizes in the triclinic space group P-1, a consequence of incomplete insertion into the Sn-NMe2 bonds, versus mesityl isocyanate, which produces a monomeric double insertion product, 6, under the same conditions, indicating a difference in reactivity between phenyl isocyanate and mesityl isocyanate with respect to insertion into Sn-NMe2 bonds. The metal centers in these complexes are all four-coordinate, displaying either distorted trigonal bipyramidal or trigonal bipyramidal geometries. The steric influence of the imido-ligand substituent has a clear effect on the coordination mode of the ureide ligands, with complexes 2 and 6, which contain the cyclohexyl and mesityl ligands, displaying κ2-O,N coordination modes, whereas κ2-N,N' coordination modes are observed for the sterically bulkier tert-butyl and adamantyl derivatives, 3 and 4. The thermogravimetric analysis of the complexes 3 and 4 exhibited excellent physicochemical properties with clean single-step curves and low residual masses in their TG analyses suggesting their potential utility of these systems as MOCVD and ALD precursors.

3.
Dalton Trans ; 45(45): 18252-18258, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27801452

RESUMO

The stannous alkoxides [Sn(OR)2] [R = i-Pr, t-Bu, C(Et)Me2, CHPh2, CPh3] have been synthesised by reaction of Sn(NR'2)2 with two equivalents of HOR [R' = Me, R = i-Pr; R' = SiMe3, R = t-Bu, C(Et)Me2, CHPh2, CPh3]. Single crystal X-ray diffraction analysis of the bis(diphenylmethoxide) (4) and bis(triphenylmethoxide) (5) species have shown them to comprise three-coordinate Sn(ii) centres through dimerisation in the solid state with the alkoxide units adopting transoid and cisoid configurations across the {Sn2O2} cores respectively. Thermogravimetric analysis indicates clean decomposition and some evidence of volatility at temperatures >200 °C for all three aliphatic alkoxides, whereas both the diphenyl- and triphenylmethoxide compounds provide higher decomposition temperatures and, for the triphenylmethoxide derivative, a residual mass consistent with the formation of a carbon-containing residue. The previously reported iso-propoxide (1) and tert-butoxide (2) derivatives have been utilised in toluene solution to deposit SnO thin films by aerosol-assisted chemical vapour deposition (AACVD) on glass at temperatures between 300 and 450 °C. While SnO is deposited under hot wall conditions as the only identifiable phase by p-XRD and Raman spectroscopy for both precursors, morphological analysis by SEM reveals inferior substrate coverage in comparison to previously reported ureide-based precursor systems.

4.
Chem Commun (Camb) ; 49(78): 8773-5, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23963262

RESUMO

An easily synthesised Sn(II) bis(ureide) derivative is shown to be a single-source precursor for the aerosol-assisted CVD of SnO, providing unprecedented levels of oxidation state control at temperatures as low as 250 °C.

7.
Health Aff (Millwood) ; Suppl Web Exclusives: W391-4, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12703600

RESUMO

When most Americans think about health insurance, their frame of reference is employer- or government-sponsored health plans. But individual health insurance differs from these models. Most importantly, while individual insurance provides protection against unexpected medical expenses, it is limited in its ability to subsidize the expenses of people who already have serious health conditions when they enter the market. Nevertheless, it remains a vital part of our health care system, protecting millions of Americans against unexpected expenses at lower premium levels than many might assume.


Assuntos
Honorários e Preços , Cobertura do Seguro/economia , Seguro Saúde/economia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Nível de Saúde , Humanos , Lactente , Recém-Nascido , Seguro Saúde/classificação , Masculino , Pessoa de Meia-Idade , Setor Privado , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA