Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 25(1): 62, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060003

RESUMO

BACKGROUND: The p53 isoform Δ133p53ß is known to be associated with cancers driven by inflammation. Many of the features associated with the development of inflammation in rheumatoid arthritis (RA) parallel those evident in cancer progression. However, the role of this isoform in RA has not yet been explored. The aim of this study was to determine whether Δ133p53ß is driving aggressive disease in RA. METHODS: Using RA patient synovia, we carried out RT-qPCR and RNAScope-ISH to determine both protein and mRNA levels of Δ133p53 and p53. We also used IHC to determine the location and type of cells with elevated levels of Δ133p53ß. Plasma cytokines were also measured using a BioPlex cytokine panel and data analysed by the Milliplex Analyst software. RESULTS: Elevated levels of pro-inflammatory plasma cytokines were associated with synovia from RA patients displaying extensive tissue inflammation, increased immune cell infiltration and the highest levels of Δ133TP53 and TP53ß mRNA. Located in perivascular regions of synovial sub-lining and surrounding ectopic lymphoid structures (ELS) were a subset of cells with high levels of CD90, a marker of 'activated fibroblasts' together with elevated levels of Δ133p53ß. CONCLUSIONS: Induction of Δ133p53ß in CD90+ synovial fibroblasts leads to an increase in cytokine and chemokine expression and the recruitment of proinflammatory cells into the synovial joint, creating a persistently inflamed environment. Our results show that dysregulated expression of Δ133p53ß could represent one of the early triggers in the immunopathogenesis of RA and actively perpetuates chronic synovial inflammation. Therefore, Δ133p53ß could be used as a biomarker to identify RA patients more likely to develop aggressive disease who might benefit from targeted therapy to cytokines such as IL-6.


Assuntos
Artrite Reumatoide , Proteína Supressora de Tumor p53 , Humanos , Artrite Reumatoide/metabolismo , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/metabolismo , Inflamação/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Membrana Sinovial/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Antígenos Thy-1/imunologia
2.
Mod Pathol ; 29(3): 212-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26769142

RESUMO

Telomere maintenance is a hallmark of cancer and likely to be targeted in future treatments. In glioblastoma established methods of identifying telomerase and alternative lengthening of telomeres leave a significant proportion of tumors with no defined telomere maintenance mechanism. This study investigated the composition of these tumors using RNA-Seq. Glioblastomas with an indeterminate telomere maintenance mechanism had an increased immune signature compared with alternative lengthening of telomeres and telomerase-positive tumors. Immunohistochemistry for CD163 confirmed that the majority (80%) of tumors with an indeterminate telomere maintenance mechanism had a high presence of tumor-associated macrophages. The RNA-Seq and immunostaining data separated tumors with no defined telomere maintenance mechanism into three subgroups: alternative lengthening of telomeres like tumors with a high presence of tumor-associated macrophages and telomerase like tumors with a high presence of tumor-associated macrophages. The third subgroup had no increase in tumor-associated macrophages and may represent a distinct category. The presence of tumor-associated macrophages conferred a worse prognosis with reduced patient survival times (alternative lengthening of telomeres with and without macrophages P=0.0004, and telomerase with and without macrophages P=0.013). The immune signatures obtained from RNA-Seq were significantly different between telomere maintenance mechanisms. Alternative lengthening of telomeres like tumors with macrophages had increased expression of interferon-induced proteins with tetratricopeptide repeats (IFIT1-3). Telomerase-positive tumors with macrophages had increased expression of macrophage receptor with collagenous structure (MARCO), CXCL12 and sushi-repeat containing protein x-linked 2 (SRPX2). Telomerase-positive tumors with macrophages were also associated with a reduced frequency of total/near total resections (44% vs >76% for all other subtypes, P=0.014). In summary, different immune signatures are found among telomere maintenance mechanism-based subgroups in glioblastoma. The reduced extent of surgical resection of telomerase-positive tumors with macrophages suggests that some tumor-associated macrophages are more unfavorable.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Macrófagos/imunologia , Telômero/fisiologia , Adulto , Idoso , Western Blotting , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Feminino , Glioblastoma/imunologia , Glioblastoma/mortalidade , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Prognóstico
3.
PLoS One ; 6(10): e26737, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046342

RESUMO

Prognostic markers for glioblastoma multiforme (GBM) are important for patient management. Recent advances have identified prognostic markers for GBMs that use telomerase or the alternative lengthening of telomeres (ALT) mechanism for telomere maintenance. Approximately 40% of GBMs have no defined telomere maintenance mechanism (NDTMM), with a mixed survival for affected individuals. This study examined genetic variants in the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene that encodes the p16(INK4a) and p14(ARF) tumor suppressors, and the isocitrate dehydrogenase 1 (IDH1) gene as potential markers of survival for 40 individuals with NDTMM GBMs (telomerase negative and ALT negative by standard assays), 50 individuals with telomerase, and 17 individuals with ALT positive tumors. The analysis of CDKN2A showed NDTMM GBMs had an increased minor allele frequency for the C500G (rs11515) polymorphism compared to those with telomerase and ALT positive GBMs (p = 0.002). Patients with the G500 allele had reduced survival that was independent of age, extent of surgery, and treatment. In the NDTMM group G500 allele carriers had increased loss of CDKN2A gene dosage compared to C500 homozygotes. An analysis of IDH1 mutations showed the R132H mutation was associated with ALT positive tumors, and was largely absent in NDTMM and telomerase positive tumors. In the ALT positive tumors cohort, IDH1 mutations were associated with a younger age for the affected individual. In conclusion, the G500 CDKN2A allele was associated with NDTMM GBMs from older individuals with poorer survival. Mutations in IDH1 were not associated with NDTMM GBMs, and instead were a marker for ALT positive tumors in younger individuals.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Glioblastoma/genética , Glioblastoma/mortalidade , Adulto , Idoso , Alelos , Biomarcadores , Feminino , Frequência do Gene , Variação Genética , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Telomerase , Telômero
4.
Cancer Res ; 68(14): 5724-32, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18632625

RESUMO

Paired box (PAX) developmental genes are frequently expressed in cancers and confer survival advantages on cancer cells. We have previously found that PAX genes are deregulated in glioma. We have now investigated the expression of PAX genes in glioma and their role in telomere maintenance. The mRNA level of PAX8 showed a positive correlation with telomerase activity in glioma biopsies (r(2) = 0.75, P < 0.001) and in established glioma cell lines (r(2) = 0.97, P = 0.0025). We found that PAX8 is able to coordinately transactivate the promoter for both the telomerase catalytic subunit (hTERT) and the telomerase RNA component (hTR) genes. By electrophoretic mobility shift assay, quantitative PCR, and a telomerase activity assay, we show that PAX8 binds directly to the hTERT and hTR promoters, up-regulating hTERT and hTR mRNA, as well as telomerase activity. Additionally, PAX8 small interfering RNA down-regulated hTERT and hTR. Collectively, these results show that PAX8 may have a role in telomerase regulation.


Assuntos
Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , RNA/metabolismo , Telomerase/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fator de Transcrição PAX8 , Homologia de Sequência do Ácido Nucleico , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA