Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
2.
Brain Pathol ; 33(3): e13118, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36161399

RESUMO

Chronic inflammation is frequently invoked as a mechanism of neurodegeneration and yet inflammatory cell infiltrates are seldom seen in brains of these disorders. Different disciplines utilize different technologies and methodologies to describe what is immunologically defined as the innate immune response (IIR). We examined murine models of the human neurodegenerative disease Aicardi-Goutières Syndrome, where an IIR is initiated by aberrant RNA metabolism secondary to a mutation in adenosine deaminase acting on RNA gene (ADAR1). We previously showed that these mice demonstrated a deficit in RNA editing that lead to MDA-5 mediated RNA sensing pathway activation of the IIR with massive interferon stimulated gene transcription and translation. As early as 2 weeks of age, in situ hybridization demonstrated that different central nervous system (CNS) cell lineages expressed very high levels of distinct interferon stimulated genes (ISGs) in the absence of interferon and absence of immune cell infiltrates. We have expanded these studies to more completely describe the breadth of ISG expression systemically and in CNS using double label in situ hybridization. Within the CNS aberrant ISG expression was mostly limited to neurons, microglia, ependyma, choroid plexus, and endothelial cells with little expression in oligodendroglia and astrocytes except for STAT1. Wild type controls showed a similar pattern of ISG expression but only in aged mice and at levels minimally detectable by in situ hybridization. Despite months of elevated ISG expression in mutant mice, there was essentially no inflammatory infiltrate, no interferon production and minimal glial reaction. Histomorphological neurodegenerative pathology of ventricular dilatation and deep gray matter mineralization were evident in mutant mice 8-13 months of age but this did not show a spatial relationship to ISG expression. This IIR without immune cell infiltration leads to neurodegeneration through non-canonical pathways that may accentuate normal aging pathways.


Assuntos
Células Endoteliais , Doenças Neurodegenerativas , Humanos , Animais , Camundongos , Células Endoteliais/metabolismo , Modelos Animais de Doenças , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Imunidade Inata , RNA/metabolismo , Adenosina Desaminase/metabolismo
3.
J Neuroinflammation ; 19(1): 285, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457126

RESUMO

BACKGROUND: Aicardi-Goutières syndrome (AGS) is a severe neurodegenerative disease with clinical features of early-onset encephalopathy and progressive loss of intellectual abilities and motor control. Gene mutations in seven protein-coding genes have been found to be associated with AGS. However, the causative role of these mutations in the early-onset neuropathogenesis has not been demonstrated in animal models, and the mechanism of neurodegeneration of AGS remains ambiguous. METHODS: Via CRISPR/Cas-9 technology, we established a mutant mouse model in which a genetic mutation found in AGS patients at the ADAR1 coding gene (Adar) loci was introduced into the mouse genome. A mouse model carrying double gene mutations encoding ADAR1 and MDA-5 was prepared using a breeding strategy. Phenotype, gene expression, RNA sequencing, innate immune pathway activation, and pathologic studies including RNA in situ hybridization (ISH) and immunohistochemistry were used for characterization of the mouse models to determine potential disease mechanisms. RESULTS: We established a mouse model bearing a mutation in the catalytic domain of ADAR1, the D1113H mutation found in AGS patients. With this mouse model, we demonstrated a causative role of this mutation for the early-onset brain injuries in AGS and determined the signaling pathway underlying the neuropathogenesis. First, this mutation altered the RNA editing profile in neural transcripts and led to robust IFN-stimulated gene (ISG) expression in the brain. By ISH, the brains of mutant mice showed an unusual, multifocal increased expression of ISGs that was cell-type dependent. Early-onset astrocytosis and microgliosis and later stage calcification in the deep white matter areas were observed in the mutant mice. Brain ISG activation and neuroglial reaction were completely prevented in the Adar D1113H mutant mice by blocking RNA sensing through deletion of the cytosolic RNA receptor MDA-5. CONCLUSIONS: The Adar D1113H mutation in the ADAR1 catalytic domain results in early-onset and MDA5-dependent encephalopathy with IFN pathway activation in the mouse brain.


Assuntos
Lesões Encefálicas , Doenças Neurodegenerativas , Animais , Camundongos , Domínio Catalítico , Encéfalo , Mutação/genética , Modelos Animais de Doenças , RNA , Adenosina Desaminase/genética
5.
Pediatr Neurosurg ; 57(2): 118-126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34969032

RESUMO

BACKGROUND: Optic pathway/hypothalamic gliomas are rare pediatric brain tumors. The management paradigm for these challenging tumors includes chemotherapy, radiotherapy, or surgical resection, but the optimal management strategy remains elusive. Gamma knife radiosurgery (GKRS) has emerged as a promising treatment for such lesions as documented by a small number of cases in the literature. CASE PRESENTATION: We present a rare case of hypothalamic glioma in a 13-year-old girl who was referred to our service due to growth of an incidentally diagnosed hypothalamic lesion following head injury at the age of 8 years. The lesion demonstrated hypointensity on T1- and hyperintensity on T2-weighted imaging without contrast enhancement. Given the growth of the lesion on serial imaging, a stereotactic biopsy was performed demonstrating low-grade glioma. The patient underwent GKRS treatment with a marginal dose of 15 Gy at 50% isodose line for a tumor volume of 2.2 mL. Annual radiological surveillance over the next 17 years demonstrated a gradual shrinkage of the lesion until it completely disappeared. The patient is currently a healthy 31-year-old female without any visual, endocrine, or neurocognitive deficits. CONCLUSION: The outcome obtained after extended follow-up in our patient highlights the safety and efficacy of GKRS in the management of hypothalamic gliomas in pediatrics, which in turn can avoid potentially serious complications of surgery in this vulnerable patient population, especially in this sensitive location.


Assuntos
Neoplasias Encefálicas , Glioma do Nervo Óptico , Radiocirurgia , Adolescente , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Criança , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Radiocirurgia/métodos , Estudos Retrospectivos , Resultado do Tratamento
6.
J Neurosurg ; 136(2): 492-502, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34330101

RESUMO

OBJECTIVE: Cerebral arteriovenous malformations (AVMs) are rare cerebral vascular lesions that are associated with high morbidity and mortality from hemorrhage; however, stereotactic radiosurgery (SRS) is a well-validated treatment modality. Few reports have delineated a subgroup of patients who develop delayed chronic encapsulated expanding hematomas (CEEHs) despite angiographic evidence of AVM obliteration following radiosurgery. In this report, the authors performed a retrospective review of more than 1000 radiosurgically treated intracranial AVM cases to delineate the incidence and management of this rare entity. METHODS: Between 1988 and 2019, 1010 patients with intracranial AVM underwent Gamma Knife SRS at the University of Pittsburgh Medical Center. In addition to a review of a prospective institutional database, the authors performed a retrospective chart review of the departmental AVM database to specifically identify patients with CEEH. Pertinent clinical and radiological characteristics as well as patient outcomes were recorded and analyzed. RESULTS: Nine hundred fifty patients with intracranial AVM (94%) had sufficient clinical follow-up for analysis. Of these, 6 patients with CEEH underwent delayed resection (incidence rate of 0.0045 event per person-year). These patients included 4 males and 2 females with a mean age of 45.3 ± 13.8 years at the time of initial SRS. Four patients had smaller AVM volumes (4.9-10 cm3), and 3 of them were treated with a single SRS procedure. Two patients had larger-volume AVMs (55 and 56 cm3), and both underwent multimodal management that included staged SRS and embolization. Time to initial recognition of the CEEH after initial SRS ranged between 66 and 243 months. The time between CEEH recognition and resection ranged from 2 to 9 months. Resection was required because of progressive neurological symptoms that correlated with imaging evidence of gradual hematoma expansion. All 6 patients had angiographically confirmed obliteration of their AVM. Pathology revealed a mixed chronicity hematoma with areas of fibrosed blood vessels and rare areas of neovascularization with immature blood vessels but no evidence of a persistent AVM. All 6 patients reported persistent clinical improvement after hematoma resection. CONCLUSIONS: CEEH after SRS for AVM is a rare complication with an incidence rate of 0.0045 event per person-year over the authors' 30-year experience. When clinical symptoms progress and imaging reveals progressive enlargement over time, complete resection of a CEEH results in significant clinical recovery. Knowledge of this rare entity facilitates timely detection and eventual surgical intervention to achieve optimal outcomes.


Assuntos
Malformações Arteriovenosas Intracranianas , Radiocirurgia , Adulto , Feminino , Seguimentos , Hematoma/complicações , Humanos , Malformações Arteriovenosas Intracranianas/complicações , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/cirurgia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos Retrospectivos , Resultado do Tratamento
7.
J Neuroinflammation ; 18(1): 169, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332594

RESUMO

BACKGROUND: Aicardi-Goutières syndrome (AGS) is a severe infant or juvenile-onset autoimmune disease characterized by inflammatory encephalopathy with an elevated type 1 interferon-stimulated gene (ISG) expression signature in the brain. Mutations in seven different protein-coding genes, all linked to DNA/RNA metabolism or sensing, have been identified in AGS patients, but none of them has been demonstrated to activate the IFN pathway in the brain of an animal. The molecular mechanism of inflammatory encephalopathy in AGS has not been well defined. Adenosine Deaminase Acting on RNA 1 (ADAR1) is one of the AGS-associated genes. It carries out A-to-I RNA editing that converts adenosine to inosine at double-stranded RNA regions. Whether an AGS-associated mutation in ADAR1 activates the IFN pathway and causes autoimmune pathogenesis in the brain is yet to be determined. METHODS: Mutations in the ADAR1 gene found in AGS patients were introduced into the mouse genome via CRISPR/Cas9 technology. Molecular activities of the specific p.K999N mutation were investigated by measuring the RNA editing levels in brain mRNA substrates of ADAR1 through RNA sequencing analysis. IFN pathway activation in the brain was assessed by measuring ISG expression at the mRNA and protein level through real-time RT-PCR and Luminex assays, respectively. The locations in the brain and neural cell types that express ISGs were determined by RNA in situ hybridization (ISH). Potential AGS-related brain morphologic changes were assessed with immunohistological analysis. Von Kossa and Luxol Fast Blue staining was performed on brain tissue to assess calcification and myelin, respectively. RESULTS: Mice bearing the ADAR1 p.K999N were viable though smaller than wild type sibs. RNA sequencing analysis of neuron-specific RNA substrates revealed altered RNA editing activities of the mutant ADAR1 protein. Mutant mice exhibited dramatically elevated levels of multiple ISGs within the brain. RNA ISH of brain sections showed selective activation of ISG expression in neurons and microglia in a patchy pattern. ISG-15 mRNA was upregulated in ADAR1 mutant brain neurons whereas CXCL10 mRNA was elevated in adjacent astroglia. No calcification or gliosis was detected in the mutant brain. CONCLUSIONS: We demonstrated that an AGS-associated mutation in ADAR1, specifically the p.K999N mutation, activates the IFN pathway in the mouse brain. The ADAR1 p.K999N mutant mouse replicates aspects of the brain interferonopathy of AGS. Neurons and microglia express different ISGs. Basal ganglia calcification and leukodystrophy seen in AGS patients were not observed in K999N mutant mice, indicating that development of the full clinical phenotype may need an additional stimulus besides AGS mutations. This mutant mouse presents a robust tool for the investigation of AGS and neuroinflammatory diseases including the modeling of potential "second hits" that enable severe phenotypes of clinically variable diseases.


Assuntos
Adenosina Desaminase/genética , Doenças Autoimunes do Sistema Nervoso/genética , Encéfalo/imunologia , Imunidade Inata/genética , Mutação , Malformações do Sistema Nervoso/genética , Animais , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Camundongos , Malformações do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/metabolismo , Edição de RNA
8.
Free Neuropathol ; 22021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37284627

RESUMO

For the past 400 years, the most common cause of dementia was tertiary syphilis [1]. Its prevalence declined dramatically with the advent of potent antibiotics in the 20th century, but these same antibiotics also helped increase our average lifespan, leading to dramatic increases in the prevalence of age-related dementias. Abundant progress has been made connecting early onset dementias with mutations in neural genes. Late onset dementias have been linked to a more enigmatic set of genes, some of which have been connected to neuroinflammation, begging the question: Are age-related dementias linked to infection? Numerous studies have reported an association between dementia and infections in general and viral infections in particular. While these associations have been subject to extensive reviews, the purpose of this synthesis is to examine the hypothesized link of viral infections and dementia from the opposite perspective: What do we know about acute and chronic encephalitides that could forge a link with dementias? There appears to be little support for the concept that viral infections are a major contributor to today's common dementias. However, the emergence of new central nervous system (CNS) viral infections, coupled with senescent immune and nervous systems in our aged population, create new opportunities for infections to contribute to dementia.

9.
J Neuropathol Exp Neurol ; 79(10): 1115-1121, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32954433

RESUMO

Neurotoxic side effects of traditional systemic chemotherapy are abundantly described. The introduction of newly developed biologic therapeutics and cellular immune effector therapies has expanded the spectrum of neurotoxicity. Multifocal necrotizing leukoencephalopathy (MNL) is a pathologic condition of unknown etiology that has been observed in patients after prolonged critical illness. We observed a case of MNL in a patient treated with extensive multimodal therapy including chimeric antigen receptor T cells. A month before death, MRI demonstrated signs of inflammation and developing edema in brainstem structures. At autopsy the abnormal MRI regions showed a wave-like loss of microglia with hemorrhagic MNL in regions closest to the brain surface. These findings reiterate the susceptibility of white matter to antineoplastic therapy and suggest new mechanisms of neurotoxicity when traditional chemotherapy is combined with biologic or cellular effector therapy.


Assuntos
Terapia Combinada/efeitos adversos , Imunoterapia Adotiva/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/etiologia , Leucoencefalopatia Multifocal Progressiva/patologia , Linfoma Difuso de Grandes Células B/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Terapia Combinada/métodos , Ciclofosfamida/efeitos adversos , Dexametasona/efeitos adversos , Doxorrubicina/efeitos adversos , Feminino , Humanos , Inotuzumab Ozogamicina/administração & dosagem , Inotuzumab Ozogamicina/efeitos adversos , Microglia/patologia , Pessoa de Meia-Idade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Receptores de Antígenos Quiméricos , Vincristina/efeitos adversos
10.
J Neuropathol Exp Neurol ; 79(8): 823-842, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32647884

RESUMO

Biological evolution of the microbiome continually drives the emergence of human viral pathogens, a subset of which attack the nervous system. The sheer number of pathogens that have appeared, along with their abundance in the environment, demand our attention. For the most part, our innate and adaptive immune systems have successfully protected us from infection; however, in the past 5 decades, through pathogen mutation and ecosystem disruption, a dozen viruses emerged to cause significant neurologic disease. Most of these pathogens have come from sylvatic reservoirs having made the energetically difficult, and fortuitously rare, jump into humans. But the human microbiome is also replete with agents already adapted to the host that need only minor mutations to create neurotropic/toxic agents. While each host/virus symbiosis is unique, this review examines virologic and immunologic principles that govern the pathogenesis of different viral CNS infections that were described in the past 50 years (Influenza, West Nile Virus, Zika, Rift Valley Fever Virus, Hendra/Nipah, Enterovirus-A71/-D68, Human parechovirus, HIV, and SARS-CoV). Knowledge of these pathogens provides us the opportunity to respond and mitigate infection while at the same time prepare for inevitable arrival of unknown agents.


Assuntos
Viroses do Sistema Nervoso Central/epidemiologia , Viroses do Sistema Nervoso Central/transmissão , Zoonoses/epidemiologia , Zoonoses/transmissão , Animais , Aves , Viroses do Sistema Nervoso Central/prevenção & controle , Ecossistema , Humanos , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle , Influenza Aviária/transmissão , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/prevenção & controle , Febre do Nilo Ocidental/transmissão , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/transmissão , Zoonoses/prevenção & controle
11.
Fetal Diagn Ther ; 47(1): 7-14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30974442

RESUMO

INTRODUCTION: Documentation of histologic findings associated with congenital hydrocephalus in the fetal lamb model is a critical step in evaluating the efficacy of ventriculoamniotic shunting in the human fetus. METHODS: Four fetal sheep had hydrocephalus induced at approximately 95 days' gestation. Two co-twins remained as controls. The ewes were euthanized at term. The lamb brains were fixed in formalin, paraffin-embedded, stained, and analyzed for markers of neuropathology. Astrocytosis, microgliosis, and axonal loss were assessed with immunocytochemistry for glial fibrillary acidic protein, ionized calcium-binding adapter, and neurofilament/amyloid precursor protein, respectively. Cortical gray matter extracellular matrix was assessed with staining for the lectin Wisteria Floribunda agglutinin. RESULTS: Hydrocephalic lamb brains demonstrated deep white matter damage with loss of projecting axonal tracts in regions physically distorted by hydrocephalus, similar to that seen in hydrocephalic humans. There was no evidence of abnormal neocortical neuronal migration; however, there was evidence for delayed maturation of the neocortical gray matter, possibly from increased intracerebral pressure and subsequent ischemia. Control lamb brains demonstrated none of the above findings. CONCLUSION: This histological approach can be used to further define the mechanism of brain damage associated with hydrocephalus and interpret the efficacy of ventriculoamniotic shunting on fetal lamb brain neuroanatomy.


Assuntos
Encéfalo/patologia , Hidrocefalia/congênito , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Hidrocefalia/patologia , Gravidez , Ovinos
12.
Am J Pathol ; 189(12): 2389-2399, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31585069

RESUMO

Influenza virus infection causes a spectrum of diseases, ranging from mild upper respiratory tract infection to severe lower respiratory tract infection, that can lead to diffuse alveolar damage, interstitial and airspace inflammation, or acute respiratory failure. Mechanisms instructing disease severity are not completely understood, but host, viral, and bacterial factors influence disease outcome. With age being one host factor associated with a higher risk of severe influenza, we investigated regional pulmonary distribution and severity of pneumonia after 2009 H1N1 influenza virus infection in newly weaned, adult, and aged ferrets to better understand age-dependent susceptibility and pathology. Aged ferrets exhibited greater weight loss and higher rates of mortality than adult ferrets, whereas most newly weaned ferrets did not lose weight but had a lack of weight gain. Newly weaned ferrets exhibited minimal pneumonia, whereas adult and aged ferrets had a spectrum of pneumonia severity. Influenza virus-induced pneumonia peaked earliest in adult ferrets, whereas aged ferrets had delayed presentation. Bronchial severity differed among groups, but bronchial pathology was comparable among all cohorts. Alveolar infection was strikingly different among groups. Newly weaned ferrets had little alveolar cell infection. Adult and aged ferrets had alveolar infection, but aged ferrets were unable to clear infection. These different age-related pneumonia and infection patterns suggest therapeutic strategies to treat influenza should be tailored contingent on age.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Pulmão/patologia , Infecções por Orthomyxoviridae/veterinária , Infecções Respiratórias/veterinária , Envelhecimento , Animais , Modelos Animais de Doenças , Feminino , Furões , Masculino , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Índice de Gravidade de Doença
13.
Retrovirology ; 15(1): 17, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391069

RESUMO

BACKGROUND: Damage to the central nervous system during HIV infection can lead to variable neurobehavioral dysfunction termed HIV-associated neurocognitive disorders (HAND). There is no clear consensus regarding the neuropathological or cellular basis of HAND. We sought to study the potential contribution of aging to the pathogenesis of HAND. Aged (range = 14.7-24.8 year) rhesus macaques of Chinese origin (RM-Ch) (n = 23) were trained to perform cognitive tasks. Macaques were then divided into four groups to assess the impact of SIVmac251 infection (n = 12) and combined antiretroviral therapy (CART) (5 infected; 5 mock-infected) on the execution of these tasks. RESULTS: Aged SIV-infected RM-Ch demonstrated significant plasma viremia and modest CSF viral loads but showed few clinical signs, no elevations of systemic temperature, and no changes in activity levels, platelet counts or weight. Concentrations of biomarkers of acute and chronic inflammation such as soluble CD14, CXCL10, IL-6 and TNF-α are known to be elevated following SIV infection of young adult macaques of several species, but concentrations of these biomarkers did not shift after SIV infection in aged RM-Ch and remained similar to mock-infected macaques. Neither acute nor chronic SIV infection or CART had a significant impact on accuracy, speed or percent completion in a sensorimotor test. CONCLUSIONS: Viremia in the absence of a chronic elevated inflammatory response seen in some aged RM-Ch is reminiscent of SIV infection in natural disease resistant hosts. The absence of cognitive impairment during SIV infection in aged RM-Ch might be in part attributed to diminishment of some facets of the immunological response. Additional study encompassing species and age differences is necessary to substantiate this hypothesis.


Assuntos
Envelhecimento , Disfunção Cognitiva/virologia , Infecções por HIV/virologia , Macaca mulatta/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Fatores Etários , Envelhecimento/sangue , Envelhecimento/líquido cefalorraquidiano , Envelhecimento/imunologia , Animais , Anticorpos Antivirais/sangue , Terapia Antirretroviral de Alta Atividade , Doenças Assintomáticas , Encéfalo/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/imunologia , Modelos Animais de Doenças , Feminino , Infecções por HIV/sangue , Infecções por HIV/líquido cefalorraquidiano , Infecções por HIV/imunologia , Humanos , RNA Viral/sangue , RNA Viral/líquido cefalorraquidiano , Carga Viral/efeitos dos fármacos , Viremia/tratamento farmacológico , Viremia/virologia
14.
Am J Physiol Heart Circ Physiol ; 314(6): H1117-H1136, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29393657

RESUMO

Aging in later life engenders numerous changes to the cerebral microvasculature. Such changes can remain clinically silent but are associated with greater risk for negative health outcomes over time. Knowledge is limited about the pathogenesis, prevention, and treatment of potentially detrimental changes in the cerebral microvasculature that occur with advancing age. In this review, we summarize literature on aging of the cerebral microvasculature, and we propose a conceptual framework to fill existing research gaps and advance future work on this heterogeneous phenomenon. We propose that the major gaps in this area are attributable to an incomplete characterization of cerebrovascular pathology, the populations being studied, and the temporality of exposure to risk factors. Specifically, currently available measures of age-related cerebral microvasculature changes are indirect, primarily related to parenchymal damage rather than direct quantification of small vessel damage, limiting the understanding of cerebral small vessel disease (cSVD) itself. Moreover, studies seldom account for variability in the health-related conditions or interactions with risk factors, which are likely determinants of cSVD pathogenesis. Finally, study designs are predominantly cross-sectional and/or have relied on single time point measures, leaving no clear evidence of time trajectories of risk factors or of change in cerebral microvasculature. We argue that more resources should be invested in 1) developing methodological approaches and basic science models to better understand the pathogenic and etiological nature of age-related brain microvascular diseases and 2) implementing state-of-the-science population study designs that account for the temporal evolution of cerebral microvascular changes in diverse populations across the lifespan.


Assuntos
Envelhecimento , Pesquisa Biomédica/métodos , Artérias Cerebrais , Doenças de Pequenos Vasos Cerebrais , Microvasos , Neurociências/métodos , Vigilância da População/métodos , Fatores Etários , Animais , Biomarcadores/metabolismo , Artérias Cerebrais/diagnóstico por imagem , Artérias Cerebrais/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Circulação Cerebrovascular , Humanos , Microcirculação , Microvasos/diagnóstico por imagem , Microvasos/fisiopatologia , Prognóstico , Fatores de Risco
15.
J Neuropathol Exp Neurol ; 77(3): 193-198, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346650

RESUMO

During the Zika epidemic in Brazil, a baby was born at term with microcephaly and arthrogryposis. The mother had Zika symptoms at 10 weeks of gestation. At 17 weeks, ultrasound showed cerebral malformation and ventriculomegaly. At 24 weeks, the amniotic fluid contained ZIKV RNA and at birth, placenta and maternal blood were also positive using RT-qPCR. At birth the baby urine contained ZIKV RNA, whereas CSF at birth and urine at 17 days did not. Seizures started at 6 days. EEG was abnormal and CT scan showed cerebral atrophy, calcifications, lissencephaly, ventriculomegaly, and cerebellar hypoplasia. Bacterial sepsis at 2 months was treated. A sudden increase in head circumference occurred at 4 months necessitating ventricle-peritoneal shunt placement. At 5 months, the infant died with sepsis due to bacterial meningitis. Neuropathological findings were as severe as some of those found in neonates who died soon after birth, including hydrocephalus, destructive lesions/calcification, gliosis, abnormal neuronal migration, dysmaturation of nerve cells, hypomyelination, loss of descending axons, and spinal motor neurons. ZIKV RNA was detected only in frozen brain tissue using RT-qPCR, but infected cells were not detected by in situ hybridization. Progressive gliosis and microgliosis in the midbrain may have contributed to aqueduct compression and subsequent hydrocephalus. The etiology of progressive disease after in utero infection is not clear and requires investigation.


Assuntos
Encéfalo , Infecção por Zika virus , Autopsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/ultraestrutura , Encéfalo/virologia , Gliose/etiologia , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Neuropatologia , Tomógrafos Computadorizados , Zika virus/genética , Zika virus/metabolismo , Infecção por Zika virus/complicações , Infecção por Zika virus/diagnóstico por imagem , Infecção por Zika virus/fisiopatologia , Infecção por Zika virus/virologia
16.
Neuropathology ; 37(5): 393-397, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28493351

RESUMO

The recent epidemic of West Nile Virus (WNV) infection in the United States was associated with severe neurological disease in immunocompromised hosts, while the emergence of Zika virus infection in the Americas has been notable for an association with increased microcephaly in the fetuses of infected mothers. Rare autopsies of WNV infected humans have shown multiple organ involvement with a clear neurotropism. We have recently had the opportunity to examine the distribution of Zika virus in autopsies of newborns from infected pregnancies. While both viruses infect multiple organs, Zika appears to cause neurological disease in the fetus through two different mechanisms. Infection during the first trimester showed the potential to infect neural progenitor cells causing severe developmental abnormalities, while infection later in gestation was associated with meningeal infection and destructive ischemic lesions of the brain. Both viruses infect kidney tubules but Zika shares a prominent hepatotropism characteristic of other flaviviruses (e.g., Dengue). Limited transplacental Zika infection would be consistent with restriction to primary maternal infections with high viremia. In the absence of a vaccine, restriction of travel by immunosuppressed and pregnant non-immune individuals to endemic regions seems prudent.


Assuntos
Febre do Nilo Ocidental/patologia , Infecção por Zika virus/patologia , Feminino , Feto/patologia , Feto/virologia , Humanos , Recém-Nascido , Gravidez
18.
Acta Neuropathol ; 133(6): 983-999, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28332092

RESUMO

A major concern associated with ZIKV infection is the increased incidence of microcephaly with frequent calcifications in infants born from infected mothers. To date, postmortem analysis of the central nervous system (CNS) in congenital infection is limited to individual reports or small series. We report a comprehensive neuropathological study in ten newborn babies infected with ZIKV during pregnancy, including the spinal cords and dorsal root ganglia (DRG), and also muscle, pituitaries, eye, systemic organs, and placentas. Using in situ hybridization (ISH) and electron microscopy, we investigated the role of direct viral infection in the pathogenesis of the lesions. Nine women had Zika symptoms between the 4th and 18th and one in the 28th gestational week. Two babies were born at 32, one at 34 and 36 weeks each and six at term. The cephalic perimeter was reduced in four, and normal or enlarged in six patients, although the brain weights were lower than expected. All had arthrogryposis, except the patient infected at 28 weeks gestation. We defined three patterns of CNS lesions, with different patterns of destructive, calcification, hypoplasia, and migration disturbances. Ventriculomegaly was severe in the first pattern due to midbrain damage with aqueduct stenosis/distortion. The second pattern had small brains and mild/moderate (ex-vacuo) ventriculomegaly. The third pattern, a well-formed brain with mild calcification, coincided with late infection. The absence of descending fibres resulted in hypoplastic basis pontis, pyramids, and cortico-spinal tracts. Spinal motor cell loss explained the intrauterine akinesia, arthrogryposis, and neurogenic muscle atrophy. DRG, dorsal nerve roots, and columns were normal. Lympho-histiocytic inflammation was mild. ISH showed meningeal, germinal matrix, and neocortical infection, consistent with neural progenitors death leading to proliferation and migration disorders. A secondary ischemic process may explain the destructive lesions. In conclusion, we characterized the destructive and malformative consequences of ZIKV in the nervous system, as reflected in the topography and severity of lesions, anatomic localization of the virus, and timing of infection during gestation. Our findings indicate a developmental vulnerability of the immature CNS, and shed light on possible mechanisms of brain injury of this newly recognized public health threat.


Assuntos
Encéfalo/patologia , Microcefalia/patologia , Complicações Infecciosas na Gravidez , Medula Espinal/patologia , Infecção por Zika virus/congênito , Infecção por Zika virus/patologia , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Olho/diagnóstico por imagem , Olho/patologia , Feminino , Humanos , Recém-Nascido , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/etiologia , Músculo Esquelético/patologia , Hipófise/diagnóstico por imagem , Hipófise/patologia , Gravidez , Medula Espinal/diagnóstico por imagem , Adulto Jovem , Infecção por Zika virus/complicações , Infecção por Zika virus/diagnóstico por imagem
19.
PLoS Pathog ; 13(3): e1006219, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278237

RESUMO

Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1-7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission.


Assuntos
Infecção por Zika virus/patologia , Infecção por Zika virus/virologia , Animais , Separação Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Hibridização In Situ , Macaca mulatta , Masculino , Testes de Neutralização , Reação em Cadeia da Polimerase , Viremia/virologia , Zika virus
20.
J Immunol ; 198(4): 1616-1626, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062701

RESUMO

Human infections with highly pathogenic avian influenza A (H5N1) virus are frequently fatal but the mechanisms of disease remain ill-defined. H5N1 infection is associated with intense production of proinflammatory cytokines, but whether this cytokine storm is the main cause of fatality or is a consequence of extensive virus replication that itself drives disease remains controversial. Conventional intratracheal inoculation of a liquid suspension of H5N1 influenza virus in nonhuman primates likely results in efficient clearance of virus within the upper respiratory tract and rarely produces severe disease. We reasoned that small particle aerosols of virus would penetrate the lower respiratory tract and blanket alveoli where target cells reside. We show that inhalation of aerosolized H5N1 influenza virus in cynomolgus macaques results in fulminant pneumonia that rapidly progresses to acute respiratory distress syndrome with a fatal outcome reminiscent of human disease. Molecular imaging revealed intense lung inflammation coincident with massive increases in proinflammatory proteins and IFN-α in distal airways. Aerosolized H5N1 exposure decimated alveolar macrophages, which were widely infected and caused marked influx of interstitial macrophages and neutrophils. Extensive infection of alveolar epithelial cells caused apoptosis and leakage of albumin into airways, reflecting loss of epithelial barrier function. These data establish inhalation of aerosolized virus as a critical source of exposure for fatal human infection and reveal that direct viral effects in alveoli mediate H5N1 disease. This new nonhuman primate model will advance vaccine and therapeutic approaches to prevent and treat human disease caused by highly pathogenic avian influenza viruses.


Assuntos
Virus da Influenza A Subtipo H5N1/fisiologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/virologia , Alvéolos Pulmonares/virologia , Síndrome do Desconforto Respiratório/virologia , Replicação Viral , Aerossóis , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , Células Cultivadas , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Imunidade Inata/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Pulmão/imunologia , Pulmão/virologia , Macaca fascicularis , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/fisiopatologia , Pneumonia Viral/imunologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA