Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6609, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857604

RESUMO

Calcium (Ca) can contribute to soil organic carbon (SOC) persistence by mediating physico-chemical interactions between organic compounds and minerals. Yet, Ca is also crucial for microbial adhesion, potentially affecting colonization of plant and mineral surfaces. The importance of Ca as a mediator of microbe-mineral-organic matter interactions and resulting SOC transformation has been largely overlooked. We incubated 44Ca labeled soils with 13C15N labeled leaf litter to study how Ca affects microbial transformation of litter and formation of mineral associated organic matter. Here we show that Ca additions promote hyphae-forming bacteria, which often specialize in colonizing surfaces, and increase incorporation of litter into microbial biomass and carbon use efficiency by approximately 45% each. Ca additions reduce cumulative CO2 production by 4%, while promoting associations between minerals and microbial byproducts of plant litter. These findings expand the role of Ca in SOC persistence from solely a driver of physico-chemical reactions to a mediator of coupled abiotic-biotic cycling of SOC.


Assuntos
Cálcio , Solo , Solo/química , Cálcio/metabolismo , Carbono/metabolismo , Microbiologia do Solo , Plantas/metabolismo , Minerais/química
2.
Environ Microbiol ; 25(12): 3011-3018, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37431673

RESUMO

Climate change is an urgent environmental issue with wide-ranging impacts on ecosystems and society. Microbes are instrumental in maintaining the balance between carbon (C) accumulation and loss in the biosphere, actively regulating greenhouse gas fluxes from vast reservoirs of organic C stored in soils, sediments and oceans. Heterotrophic microbes exhibit varying capacities to access, degrade and metabolise organic C-leading to variations in remineralisation and turnover rates. The present challenge lies in effectively translating this accumulated knowledge into strategies that effectively steer the fate of organic C towards prolonged sequestration. In this article, we discuss three ecological scenarios that offer potential avenues for shaping C turnover rates in the environment. Specifically, we explore the promotion of slow-cycling microbial byproducts, the facilitation of higher carbon use efficiency, and the influence of biotic interactions. The ability to harness and control these processes relies on the integration of ecological principles and management practices, combined with advances in economically viable technologies to effectively manage microbial systems in the environment.


Assuntos
Carbono , Ecossistema , Carbono/metabolismo , Oceanos e Mares , Solo , Processos Heterotróficos , Sequestro de Carbono
3.
ISME Commun ; 3(1): 1, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37081121

RESUMO

Soil microbiomes are sensitive to current and previous soil conditions, and bacterial 'bioindicators' of biological, physical, and chemical soil properties have considerable potential for soil health assessment. However, the lack of ecological or physiological information for most soil microorganisms limits our ability to interpret the associations of bioindicators and, thus, their utility for guiding management. We identified bioindicators of tillage intensity and twelve soil properties used to rate soil health using a 16S rRNA gene-based survey of farmland across North America. We then inferred the genomic traits of bioindicators and evaluated their environment-wide associations (EWAS) with respect to agricultural management practice, disturbance, and plant associations with 89 studies from agroecosystems. Most bioindicators were either positively correlated with biological properties (e.g., organic matter) or negatively correlated with physical and chemical properties. Higher soil health ratings corresponded with smaller genome size and higher coding density, while lower ratings corresponded with larger genomes and higher rrn copy number. Community-weighted genome size explained most variation in health ratings. EWAS linked prominent bioindicators with the impacts of environmental disturbances. Our findings provide ecological insights into bioindicators of soil properties relevant to soil health management, illustrating the tight coupling of microbiome and soil function.

5.
Sci Total Environ ; 873: 162266, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822431

RESUMO

Mixed forest stands tend to be more resistant to drought than species-specific stands partially due to complementarity in root ecology and physiology. We asked whether complementary differences in the drought resistance of soil microbiomes might contribute to this phenomenon. We experimented on the effects of reduced soil moisture on bacterial and fungal community composition in species-specific (single species) and mixed-species root zones of Norway spruce and European beech forests in a 5-year-old throughfall-exclusion experiment and across seasonal (spring-summer-fall) and latitudinal moisture gradients. Bacteria were most responsive to changes in soil moisture, especially members of Rhizobiales, while fungi were largely unaffected, including ectomycorrhizal fungi (EMF). Community resistance was higher in spruce relative to beech root zones, corresponding with the proportions of drought-favored (more in spruce) and drought-sensitive bacterial taxa (more in beech). The spruce soil microbiome also exhibited greater resistance to seasonal changes between spring (wettest) and fall (driest). Mixed-species root zones contained a hybrid of beech- and spruce-associated microbiomes. Several bacterial populations exhibited either enhanced resistance or greater susceptibility to drought in mixed root zones. Overall, patterns in the relative abundances of soil bacteria closely tracked moisture in seasonal and latitudinal precipitation gradients and were more predictive of soil water content than other environmental variables. We conclude that complementary differences in the drought resistance of soil microbiomes can occur and the likeliest form of complementarity in mixed-root zones coincides with the enrichment of drought-tolerant bacteria associated with spruce and the sustenance of EMF by beech.


Assuntos
Fagus , Micorrizas , Picea , Solo , Florestas , Estações do Ano , Fagus/fisiologia , Bactérias , Árvores/fisiologia , Picea/fisiologia
6.
Appl Environ Microbiol ; 88(22): e0083922, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36300927

RESUMO

Tracking the metabolic activity of whole soil communities can improve our understanding of the transformation and fate of carbon in soils. We used stable isotope metabolomics to trace 13C from nine labeled carbon sources into the water-soluble metabolite pool of an agricultural soil over time. Soil was amended with a mixture of all nine sources, with one source isotopically labeled in each treatment. We compared changes in the 13C enrichment of metabolites with respect to carbon source and time over a 48-day incubation and contrasted differences between soluble sources (glucose, xylose, amino acids, etc.) and insoluble sources (cellulose and palmitic acid). Whole soil metabolite profiles varied singularly by time, while the composition of 13C-labeled metabolites differed primarily by carbon source (R2 = 0.68) rather than time (R2 = 0.07), with source-specific differences persisting throughout incubations. The 13C labeling of metabolites from insoluble carbon sources occurred slower than that from soluble sources but yielded a higher average atom percent (atom%) 13C in metabolite markers of biomass (amino acids and nucleic acids). The 13C enrichment of metabolite markers of biomass stabilized between 5 and 15 atom% 13C by the end of incubations. Temporal patterns in the 13C enrichment of tricarboxylic acid cycle intermediates, nucleobases (uracil and thymine), and by-products of DNA salvage (allantoin) closely tracked microbial activity. Our results demonstrate that metabolite production in soils is driven by the carbon source supplied to the community and that the fate of carbon in metabolites do not generally converge over time as a result of ongoing microbial processing and recycling. IMPORTANCE Carbon metabolism in soil remains poorly described due to the inherent difficulty of obtaining information on the microbial metabolites produced by complex soil communities. Our study demonstrates the use of stable isotope probing (SIP) to study carbon metabolism in soil by tracking 13C from supplied carbon sources into metabolite pools and biomass. We show that differences in the metabolism of sources influence the fate of carbon in soils. Heterogeneity in 13C-labeled metabolite profiles corresponded with compositional differences in the metabolically active populations, providing a basis for how microbial community composition correlates with the quality of soil carbon. Our study demonstrates the application of SIP-metabolomics in studying soils and identifies several metabolite markers of growth, activity, and other aspects of microbial function.


Assuntos
Carbono , Solo , Carbono/metabolismo , Microbiologia do Solo , Isótopos , Aminoácidos
7.
Environ Microbiol ; 24(12): 6184-6199, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35799501

RESUMO

Soil microbial community composition routinely correlates with pH, reflecting both direct pH effects on microbial physiology and long-term biogeochemical feedbacks. We used two watershed-scale liming experiments to identify short- (2 years) and long-term (25 years) changes in the structure and function of bacterial and fungal communities in organic horizons (Oe and Oa ) of acid forest soils. Liming increased soil pH, extractable calcium, and soil carbon stocks, reduced biomass-specific respiration, and caused major changes in the soil microbiome in the short and long term. More taxa responded to liming in the short term (70%) than in the long term (30%), with most showing consistent directional responses at both sites. The ratio of change in relative abundance between limed and reference sites was twofold higher at the long than the short-term site, indicating that the effects of liming grew over time. Liming impacts were most pronounced in fungi, as steep declines of dominant ectomycorrhizal fungi (Cenococcum and Russula) occurred at both sites. Liming favoured neutrophilic bacteria over acidophilic populations according to estimated environmental pH optima. Collectively, these results demonstrate that a liming-induced change of one pH unit has an immediate and persistent effect on the structure and function of microbial communities in acid forest soils. The corresponding suppression of respiration indicates that anthropogenic alterations of soil pH, as driven by acid deposition or liming, can affect forest floor C stocks due to pH-driven shifts in community structure.


Assuntos
Microbiota , Micorrizas , Solo/química , Concentração de Íons de Hidrogênio , Microbiologia do Solo , Carbono , Florestas , Bactérias/genética
8.
Front Microbiol ; 13: 914472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756023

RESUMO

Microorganisms have evolved various life-history strategies to survive fluctuating resource conditions in soils. However, it remains elusive how the life-history strategies of microorganisms influence their processing of organic carbon, which may affect microbial interactions and carbon cycling in soils. Here, we characterized the genomic traits, exometabolite profiles, and interactions of soil bacteria representing copiotrophic and oligotrophic strategists. Isolates were selected based on differences in ribosomal RNA operon (rrn) copy number, as a proxy for life-history strategies, with pairs of "high" and "low" rrn copy number isolates represented within the Micrococcales, Corynebacteriales, and Bacillales. We found that high rrn isolates consumed a greater diversity and amount of substrates than low rrn isolates in a defined growth medium containing common soil metabolites. We estimated overlap in substrate utilization profiles to predict the potential for resource competition and found that high rrn isolates tended to have a greater potential for competitive interactions. The predicted interactions positively correlated with the measured interactions that were dominated by negative interactions as determined through sequential growth experiments. This suggests that resource competition was a major force governing interactions among isolates, while cross-feeding of metabolic secretion likely contributed to the relatively rare positive interactions observed. By connecting bacterial life-history strategies, genomic features, and metabolism, our study advances the understanding of the links between bacterial community composition and the transformation of carbon in soils.

9.
Glob Chang Biol ; 28(18): 5399-5415, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35770362

RESUMO

Microbial community structure and function regularly covary with soil pH, yet effects of these interactions on soil carbon are rarely tested experimentally within natural ecosystems. We investigated the enduring (25 year) impacts of liming on microbial community structure and decomposition at an acidic northern hardwood forest, where experimental liming increased pH one unit and surprisingly doubled the organic carbon stocks of the forest floor. We show that this increase in carbon storage corresponded with restructuring of the bacterial and fungal communities that drive decomposition. In the Oe horizon, liming reduced the activities of five extracellular enzymes that mediate decomposition, while the Oa horizon showed an especially large (64%) reduction in the activity of a sixth, peroxidase, which is an oxidative enzyme central to lignocellulose degradation. Decreased enzyme activities corresponded with loss of microbial taxa important for lignocellulose decay, including large reductions in the dominant ectomycorrhizal genera Russula and Cenococcum, saprotrophic and wood decaying fungi, and Actinobacteria (Thermomonosporaceae). These results demonstrate the importance of pH as a dominant regulator of microbial community structure and illustrate how changes to this structure can produce large, otherwise unexpected increases in carbon storage in forest soils.


Assuntos
Microbiota , Micorrizas , Bactérias/metabolismo , Carbono/metabolismo , Florestas , Fungos/metabolismo , Micorrizas/metabolismo , Solo/química , Microbiologia do Solo
10.
J Gen Virol ; 103(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35766975

RESUMO

Echinoderms are a phylum of marine invertebrates that include model organisms, keystone species, and animals commercially harvested for seafood. Despite their scientific, ecological, and economic importance, there is little known about the diversity of RNA viruses that infect echinoderms compared to other invertebrates. We screened over 900 transcriptomes and viral metagenomes to characterize the RNA virome of 38 echinoderm species from all five classes (Crinoidea, Holothuroidea, Asteroidea, Ophiuroidea and Echinoidea). We identified 347 viral genome fragments that were classified to genera and families within nine viral orders - Picornavirales, Durnavirales, Martellivirales, Nodamuvirales, Reovirales, Amarillovirales, Ghabrivirales, Mononegavirales, and Hepelivirales. We compared the relative viral representation across three life stages (embryo, larvae, adult) and characterized the gene content of contigs which encoded complete or near-complete genomes. The proportion of viral reads in a given transcriptome was not found to significantly differ between life stages though the majority of viral contigs were discovered from transcriptomes of adult tissue. This study illuminates the biodiversity of RNA viruses from echinoderms, revealing the occurrence of viral groups in natural populations.


Assuntos
RNA , Viroma , Animais , Biodiversidade , Equinodermos/genética , Filogenia , Análise de Sequência de DNA , Viroma/genética
11.
Environ Microbiol ; 24(1): 1-17, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929753

RESUMO

Bacteria can regulate cell morphology in response to environmental conditions, altering their physiological and metabolic characteristics to improve survival. Conditional filamentation, in which cells suspend division while continuing lateral growth, is a strategy with a range of adaptive benefits. Here, we review the causes and consequences of conditional filamentation with respect to bacterial physiology, ecology and evolution. We describe four major benefits from conditional filamentation: stress tolerance, surface colonization, gradient spanning and the facilitation of biotic interactions. Adopting a filamentous growth habit involves fitness trade-offs which are also examined. We focus on the role of conditional filamentation in soil habitats, where filamentous morphotypes are highly prevalent and where environmental heterogeneity can benefit a conditional response. To illustrate the use of information presented in our review, we tested the conditions regulating filamentation by the forest soil isolate Paraburkholderia elongata 5NT . Filamentation by P. elongata was induced at elevated phosphate concentrations, and was associated with the accumulation of intracellular polyphosphate, highlighting the role of filamentation in a phosphate-solubilizing bacterium. Conditional filamentation enables bacteria to optimize their growth and metabolism in environments that are highly variable, a trait that can impact succession, symbioses, and biogeochemistry in soil environments.


Assuntos
Burkholderiaceae , Solo , Bactérias/genética , Florestas , Fenótipo
12.
mBio ; 12(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402535

RESUMO

Microorganisms that degrade cellulose utilize extracellular reactions that yield free by-products which can promote interactions with noncellulolytic organisms. We hypothesized that these interactions determine the ecological and physiological traits governing the fate of cellulosic carbon (C) in soil. We performed comparative genomics with genome bins from a shotgun metagenomic-stable isotope probing experiment to characterize the attributes of cellulolytic and noncellulolytic taxa accessing 13C from cellulose. We hypothesized that cellulolytic taxa would exhibit competitive traits that limit access, while noncellulolytic taxa would display greater metabolic dependency, such as signatures of adaptive gene loss. We tested our hypotheses by evaluating genomic traits indicative of competitive exclusion or metabolic dependency, such as antibiotic production, growth rate, surface attachment, biomass degrading potential, and auxotrophy. The most 13C-enriched taxa were cellulolytic Cellvibrio (Gammaproteobacteria) and Chaetomium (Ascomycota), which exhibited a strategy of self-sufficiency (prototrophy), rapid growth, and competitive exclusion via antibiotic production. Auxotrophy was more prevalent in cellulolytic Actinobacteria than in cellulolytic Proteobacteria, demonstrating differences in dependency among cellulose degraders. Noncellulolytic taxa that accessed 13C from cellulose (Planctomycetales, Verrucomicrobia, and Vampirovibrionales) were also more dependent, as indicated by patterns of auxotrophy and 13C labeling (i.e., partial labeling or labeling at later stages). Major 13C-labeled cellulolytic microbes (e.g., Sorangium, Actinomycetales, Rhizobiales, and Caulobacteraceae) possessed adaptations for surface colonization (e.g., gliding motility, hyphae, attachment structures) signifying the importance of surface ecology in decomposing particulate organic matter. Our results demonstrated that access to cellulosic C was accompanied by ecological trade-offs characterized by differing degrees of metabolic dependency and competitive exclusion.IMPORTANCE Our study reveals the ecogenomic traits of microorganisms participating in the cellulose economy of soil. We identified three major categories of participants in this economy: (i) independent primary degraders, (ii) interdependent primary degraders, and (iii) secondary consumers (mutualists, opportunists, and parasites). Trade-offs between independent primary degraders, whose adaptations favor antagonism and competitive exclusion, and interdependent and secondary degraders, whose adaptations favor complex interspecies interactions, are expected to affect the fate of microbially processed carbon in soil. Our findings provide useful insights into the ecological relationships that govern one of the planet's most abundant resources of organic carbon. Furthermore, we demonstrate a novel gradient-resolved approach for stable isotope probing, which provides a cultivation-independent, genome-centric perspective into soil microbial processes.


Assuntos
Agricultura , Celulose/metabolismo , Metagenoma , Microbiologia do Solo , Solo/química , Actinobacteria/genética , Actinobacteria/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Alphaproteobacteria/genética , Alphaproteobacteria/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biomassa , Caulobacteraceae/genética , Caulobacteraceae/metabolismo , Celulose/química , Chaetomium/genética , Chaetomium/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Metagenômica , Filogenia , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética , Simbiose
13.
ISME Commun ; 1(1): 4, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36717596

RESUMO

Plant-derived phenolic acids are catabolized by soil microorganisms whose activity may enhance the decomposition of soil organic carbon (SOC). We characterized whether phenolic acid-degrading bacteria enhance SOC mineralization in forest soils when primed with 13C-labeled p-hydroxybenzoic acid (pHB). We further tested whether pHB-induced priming could explain differences in SOC content among mono-specific tree plantations in a 70-year-old common garden experiment. pHB addition primed significant losses of SOC (3-13 µmols C g-1 dry wt soil over 7 days) compared to glucose, which reduced mineralization (-3 to -8 µmols C g-1 dry wt soil over 7 days). The principal degraders of pHB were Paraburkholderia and Caballeronia in all plantations regardless of tree species or soil type, with one predominant phylotype (RP11ASV) enriched 23-fold following peak pHB respiration. We isolated and confirmed the phenolic degrading activity of a strain matching this phylotype (RP11T), which encoded numerous oxidative enzymes, including secretion signal-bearing laccase, Dyp-type peroxidase and aryl-alcohol oxidase. Increased relative abundance of RP11ASV corresponded with higher pHB respiration and expression of pHB monooxygenase (pobA), which was inversely proportional to SOC content among plantations. pobA expression proved a responsive measure of priming activity. We found that stimulating phenolic-acid degrading bacteria can prime decomposition and that this activity, corresponding with differences in tree species, is a potential mechanism in SOC cycling in forests. Overall, this study highlights the ecology and function of Paraburkholderia whose associations with plant roots and capacity to degrade phenolics suggest a role for specialized bacteria in the priming effect.

15.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32967964

RESUMO

A viral etiology of sea star wasting syndrome (SSWS) was originally explored with virus-sized material challenge experiments, field surveys, and metagenomics, leading to the conclusion that a densovirus is the predominant DNA virus associated with this syndrome and, thus, the most promising viral candidate pathogen. Single-stranded DNA viruses are, however, highly diverse and pervasive among eukaryotic organisms, which we hypothesize may confound the association between densoviruses and SSWS. To test this hypothesis and assess the association of densoviruses with SSWS, we compiled past metagenomic data with new metagenomic-derived viral genomes from sea stars collected from Antarctica, California, Washington, and Alaska. We used 179 publicly available sea star transcriptomes to complement our approaches for densovirus discovery. Lastly, we focus the study on sea star-associated densovirus (SSaDV), the first sea star densovirus discovered, by documenting its biogeography and putative tissue tropism. Transcriptomes contained only endogenized densovirus elements similar to the NS1 gene, while numerous extant densoviral genomes were recovered from viral metagenomes. SSaDV was associated with nearly all tested species from southern California to Alaska, and in contrast to previous work, we show that SSaDV is one genotype among a high diversity of densoviruses present in sea stars across the West Coast of the United States and globally that are commonly associated with grossly normal (i.e., healthy or asymptomatic) animals. The diversity and ubiquity of these viruses in sea stars confound the original hypothesis that one densovirus is the etiological agent of SSWS.IMPORTANCE The primary interest in sea star densoviruses, specifically SSaDV, has been their association with sea star wasting syndrome (SSWS), a disease that has decimated sea star populations across the West Coast of the United States since 2013. The association of SSaDV with SSWS was originally drawn from metagenomic analysis, which was further studied through field surveys using quantitative PCR (qPCR), with the conclusion that it was the most likely viral candidate in the metagenomic data based on its representation in symptomatic sea stars compared to asymptomatic sea stars. We reexamined the original metagenomic data with additional genomic data sets and found that SSaDV was 1 of 10 densoviruses present in the original data set and was no more represented in symptomatic sea stars than in asymptomatic sea stars. Instead, SSaDV appears to be a widespread, generalist virus that exists among a large diversity of densoviruses present in sea star populations.


Assuntos
Densovirus/genética , Estrelas-do-Mar/virologia , Motivos de Aminoácidos , Animais , Densovirus/classificação , Densovirus/fisiologia , Variação Genética , Genoma Viral/genética , Geografia , Metagenoma , Filogenia , Estrelas-do-Mar/genética , Transcriptoma , Proteínas Virais/genética , Tropismo Viral
16.
Int J Syst Evol Microbiol ; 70(9): 5093-5105, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32809929

RESUMO

Two bacterial strains, 1NT and 5NT, were isolated from hemlock forest soil using a soluble organic matter enrichment. Cells of 1NT (0.65×1.85 µm) and 5NT (0.6×1.85 µm) are Gram-stain-negative, aerobic, motile, non-sporulating and exist as single rods, diplobacilli or in chains of varying length. During growth in dilute media (≤0.1× tryptic soy broth; TSB), cells are primarily motile with flagella. At higher concentrations (≥0.3× TSB), cells of both strains increasingly form non-motile chains, and cells of 5NT elongate (0.57×~7 µm) and form especially long filaments. Optimum growth of 1NT and 5NT occurred at 25-30 °C, pH 6.5-7.0 and <0.5% salinity. Results of comparative chemotaxonomic, genomic and phylogenetic analyses revealed that 1NT and 5NT were distinct from one another and their closest related type strains: Paraburkholderia madseniana RP11T, Paraburkholderia aspalathi LMG 27731T and Paraburkholderia caffeinilytica CF1T. The genomes of 1NT and 5NT had an average nucleotide identity (91.6 and 91.3%) and in silico DNA-DNA hybridization values (45.8%±2.6 and 45.5%±2.5) and differed in functional gene content from their closest related type strains. The composition of fatty acids and patterns of substrate use, including the catabolism of phenolic acids, also differentiated strains 1NT and 5NT from each other and their closest relatives. The only ubiquinone present in strains 1NT and 5NT was Q-8. The major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed features 2 (3OH-C14 : 0 / C16 : 1 iso I), 3 (C16 : 1 ω6c/ω7c) and 8 (C18 : 1 ω7c/ω6c). A third bacterium, strain RL16-012-BIC-B, was isolated from soil associated with shallow roots and was determined to be a strain of P. madseniana (ANI, 98.8%; 16S rRNA gene similarity, 100%). Characterizations of strain RL16-012-BIC-B (DSM 110723=LMG 31706) led to proposed emendments to the species description of P. madseniana. Our polyphasic approach demonstrated that strains 1NT and 5NT represent novel species from the genus Paraburkholderia for which the names Paraburkholderia solitsugae sp. nov. (type strain 1NT=DSM 110721T=LMG 31704T) and Paraburkholderia elongata sp. nov. (type strain 5NT=DSM 110722T=LMG 31705T) are proposed.


Assuntos
Burkholderiaceae/classificação , Florestas , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hidroxibenzoatos , New York , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
17.
Int J Syst Evol Microbiol ; 70(3): 2137-2146, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32027304

RESUMO

RP11T was isolated from forest soil following enrichment with 4-hydroxybenzoic acid. Cells of RP11T are aerobic, non-sporulating, exhibit swimming motility, and are rods (0.8 µm by 1.4 µm) that often occur as diplobacillus or in short chains (3-4 cells). Optimal growth on minimal media containing 4-hydroxybenzoic acid (µ=0.216 hr-1) occurred at 30 °C, pH 6.5 or 7.0 and 0% salinity. Comparative chemotaxonomic, genomic and phylogenetic analyses revealed the isolate was distinct from its closest relative type strains identified as Paraburkholderia aspalathi LMG 27731T, Paraburkholderia fungorum LMG 16225T and Paraburkholderia caffeinilytica CF1T. Strain RP11T is genetically distinct from P. aspalathi, its closest relative, in terms of 16S rRNA gene sequence similarity (98.7%), genomic average nucleotide identity (94%) and in silico DNA-DNA hybridization (56.7 %±2.8). The composition of fatty acids and substrate utilization pattern differentiated strain RP11T from its closest relatives, including growth on phthalic acid. Strain RP11T encoded the greatest number of aromatic degradation genes of all eleven closely related type strains and uniquely encoded a phthalic acid dioxygenase and paralog of the 3-hydroxybenzoate 4-monooxygenase. The only ubiquinone detected in strain RP11T was Q-8, and the major cellular fatty acids were C16 : 0, 3OH-C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω7c/ω6c). On the basis of this polyphasic approach, it was determined that strain RP11T represents a novel species from the genus Paraburkholderia for which the name Paraburkholderia madseniana sp. nov. is proposed. The type strain is RP11T (=DSM 110123T=LMG 31517T).


Assuntos
Burkholderiaceae/classificação , Florestas , Hidroxibenzoatos/metabolismo , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiaceae/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , New York , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
18.
ISME J ; 13(2): 413-429, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30258172

RESUMO

Delignification, or lignin-modification, facilitates the decomposition of lignocellulose in woody plant biomass. The extant diversity of lignin-degrading bacteria and fungi is underestimated by culture-dependent methods, limiting our understanding of the functional and ecological traits of decomposers populations. Here, we describe the use of stable isotope probing (SIP) coupled with amplicon and shotgun metagenomics to identify and characterize the functional attributes of lignin, cellulose and hemicellulose-degrading fungi and bacteria in coniferous forest soils from across North America. We tested the extent to which catabolic genes partitioned among different decomposer taxa; the relative roles of bacteria and fungi, and whether taxa or catabolic genes correlated with variation in lignocellulolytic activity, measured as the total assimilation of 13C-label into DNA and phospholipid fatty acids. We found high overall bacterial degradation of our model lignin substrate, particularly by gram-negative bacteria (Comamonadaceae and Caulobacteraceae), while fungi were more prominent in cellulose-degradation. Very few taxa incorporated 13C-label from more than one lignocellulosic polymer, suggesting specialization among decomposers. Collectively, members of Caulobacteraceae could degrade all three lignocellulosic polymers, providing new evidence for their importance in lignocellulose degradation. Variation in lignin-degrading activity was better explained by microbial community properties, such as catabolic gene content and community structure, than cellulose-degrading activity. SIP significantly improved shotgun metagenome assembly resulting in the recovery of several high-quality draft metagenome-assembled genomes and over 7500 contigs containing unique clusters of carbohydrate-active genes. These results improve understanding of which organisms, conditions and corresponding functional genes contribute to lignocellulose decomposition.


Assuntos
Bactérias/metabolismo , Lignina/metabolismo , Metagenômica , Microbiologia do Solo , Solo/química , Bactérias/genética , Biomassa , Florestas , Fungos/genética , Fungos/metabolismo , Isótopos , Microbiota , América do Norte , Madeira/metabolismo
19.
ISME J ; 12(12): 3025-3037, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30108303

RESUMO

For the past 60 years Caulobacter spp. have been commonly attributed an aquatic and oligotrophic lifestyle yet are not uncommon in nutrient-rich or soil environments. This study evaluates the environmental and ecological associations of Caulobacter to reconcile past evidence, largely limited to culturing and microscopy, with currently available metagenomic and genomic data. The distribution of Caulobacter species and their characteristic adhesion-conferring genes, holdfast (hfaAB), were determined using collections of 10,641 16S rRNA gene libraries (196 studies) and 2625 shotgun metagenomes (190 studies) from a range of terrestrial and aquatic environments. Evidence for ecotypic variation was tested in 26 genomes sourced from soil, rhizosphere, plant, groundwater, and water. Caulobacter were, on average, fourfold more relatively abundant in soil than in aquatic environments, and abundant in decomposing wood, compost, and particulate matter (in air and water). Caulobacter holdfast genes were 35-fold more abundant in soils than aquatic environments. Ecotypic differences between soil and aquatic Caulobacter were evident in the environmental associations of several species and differences in genome size and content among isolates. However, most abundant species were common to both environments, suggesting populations exist in a continuum that was evident in the re-analysis of studies on the temporal dynamics of, and sources of bacterioplankton to, lakes and rivers. This study provides a new perspective on the ecological profile of Caulobacter, demonstrating that members of this genus are predominantly soil-borne, possess an overlooked role in plant matter decomposition and a dependency on water-mediated dispersal.


Assuntos
Caulobacter/fisiologia , Metagenômica , Plantas/microbiologia , Microbiologia do Solo , Caulobacter/genética , Ecologia , Biblioteca Gênica , Filogenia , RNA Ribossômico 16S/genética , Rizosfera
20.
Environ Microbiol ; 20(10): 3543-3559, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30051558

RESUMO

Earlier research on the biogeochemical factors affecting natural attenuation in coal-tar contaminated groundwater, at South Glens Falls, NY, revealed the importance of anaerobic metabolism and trophic interactions between degrader and bacterivore populations. Field-based characterizations of both phenomena have proven challenging, but advances in stable isotope probing (SIP), single-cell imaging and shotgun metagenomics now provide cultivation-independent tools for their study. We tracked carbon from 13 C-labelled naphthalene through microbial populations in contaminated surface sediments over 6 days using respiration assays, secondary ion mass spectrometry imaging and shotgun metagenomics to disentangle the contaminant-based trophic web. Contaminant-exposed communities in hypoxic/anoxic groundwater were contrasted with those from oxic surface sediments to identify putative features of anaerobic catabolism of naphthalene. In total, six bacteria were responsible for naphthalene degradation. Cupriavidus, Ralstonia and Sphingomonas predominated at the earliest stages of SIP incubations and were succeeded in later stages by Stenotrophomonas and Rhodococcus. Metagenome-assembled genomes provided evidence for the ecological and functional characteristics underlying these temporal shifts. Identical species of Stenotrophomonas and Rhodococcus were abundant in the most contaminated, anoxic groundwater. Apparent increases in bacterivorous protozoa were observed following exposure to naphthalene, though insignificant amounts of carbon were transferred between bacterial degraders and populations of secondary feeders.


Assuntos
Bactérias/metabolismo , Água Subterrânea/microbiologia , Naftalenos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Biodegradação Ambiental , Metagenoma , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA