Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Sports Act Living ; 6: 1374772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600904

RESUMO

Introduction: A history of concussion is recognized as a risk factor for musculoskeletal injury, which is likely associated with physiological effects that warrant better understanding. This study aimed to assess the potential of measurements obtained from an immersive virtual reality (VR) test to identify a subtle perceptual-motor impairment that may be prospectively associated with the occurrence of a core or lower extremity sprain or strain. Methods: A cohort of 68 high school athletes (41 female soccer players and 27 male football players) provided survey responses and completed an immersive VR test several days prior to the initiation of preseason practice sessions. Measurements of eye, neck, arm, and whole-body displacements were obtained during 40 successive lunging/reaching responses to visual stimuli moving horizontally across the VR headset display. Injury occurrences were electronically documented from the initial preseason practice session to the final game of the season. Results: A statistically significant and intrinsically credible two-factor prediction model for core or lower extremity injury occurrence included an interaction between female sex and a self-reported history of two or more concussions, along with slow response time (RT) for arm reach (OR = 4.67; 95% CI, 1.51-14.43). Follow-up analyses identified sex-specific cut points for arm reach RT associated with elevated injury risk, which were ≥1.385 s for females and ≥1.257 s for males. Discussion: High school female soccer players who have sustained more than one concussion appear to be highly vulnerable to core or lower extremity sprain or strain, with the risk of injury compounded by a slow arm reach RT. Male football players as a group demonstrated significantly faster arm reach RT than that of female soccer players, but slow perceptual-motor RT for arm reach was also identified as a potentially important injury risk factor for male players. Immersive VR appears to provide precise measurements of behavioral performance characteristics that depend on brain processing efficiency. Given that the speed, accuracy, and consistency of perceptual-motor responses may be modifiable, future research should explore the potential benefits of VR training for reducing the risk of sport-related injuries.

2.
Percept Mot Skills ; 131(3): 687-706, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657202

RESUMO

Our purpose in this study was to determine the effects of a virtual reality intervention delivering specific motivational motor learning manipulations of either autonomy support (AS) or enhanced expectancies (EE) on frontal plane single-leg squatting kinematics. We allocated 45 participants (21 male, 24 female) demonstrating knee, hip, and trunk frontal plane mechanics associated with elevated anterior cruciate ligament injury risk to one of three groups (control, AS, or EE). Participants mimicked an avatar performing five sets of eight repetitions of exemplary single-leg squats. AS participants were given the added option of choosing the color of their avatar. EE participants received real-time biofeedback in the form of green highlights on the avatar that remained on as long as the participant maintained pre-determined 'safe' frontal plane mechanics. We measured peak frontal plane knee, hip, and trunk angles before (baseline) and immediately following (post) the intervention. The control group demonstrated greater increases in knee abduction angle (Δ = +2.3°) than did the AS (Δ = +0.1°) and EE groups (Δ = -0.4°) (p = .003; η2p = .28). All groups demonstrated increased peak hip adduction (p = .01, ηp2 = .18) (control Δ = +1.5°; AS Δ = +3.2°; EE Δ = +0.7°). Hip adduction worsened in all groups. AS and EE motivation strategies appeared to mitigate maladaptive frontal plane knee mechanics.


Assuntos
Motivação , Realidade Virtual , Humanos , Masculino , Feminino , Fenômenos Biomecânicos/fisiologia , Adulto Jovem , Adulto , Motivação/fisiologia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Tronco/fisiologia , Biorretroalimentação Psicológica/fisiologia , Biorretroalimentação Psicológica/métodos
3.
Brain Sci ; 14(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38248283

RESUMO

Concussion may affect sport performance capabilities related to the visual perception of environmental events, rapid decision-making, and the generation of effective movement responses. Immersive virtual reality (VR) offers a means to quantify, and potentially enhance, the speed, accuracy, and consistency of responses generated by integrated neural processes. A cohort of 24 NCAA Division I male wrestlers completed VR assessments before and after a 3-week VR training program designed to improve their perceptual-motor performance. Prior to training, the intra-individual variability (IIV) among 40 successive task trials for perceptual latency (i.e., time elapsed between visual stimulus presentation and the initiation of movement response) demonstrated strong discrimination between 10 wrestlers who self-reported a history of concussion from 14 wrestlers who denied ever having sustained a concussion (Area Under Curve ≥ 0.750 for neck, arm, and step movements). Natural log transformation improved the distribution normality of the IIV values for both perceptual latency and response time (i.e., time elapsed between visual stimulus presentation and the completion of movement response). The repeated measures ANOVA results demonstrated statistically significant (p < 0.05) pre- and post-training differences between groups for the IIV in perceptual latency and the IIV in response time for neck, arm, and step movements. Five of the six IIV metrics demonstrated a statistically significant magnitude of change for both groups, with large effect sizes. We conclude that a VR assessment can detect impairments in perceptual-motor performance among college wrestlers with a history of concussion. Although significant post-training group differences were evident, VR training can yield significant performance improvements in both groups.

4.
Percept Mot Skills ; 130(6): 2484-2504, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776022

RESUMO

The duration, accuracy, and consistency of responses to various types of stimuli are widely accepted as indirect indicators of the efficiency of brain information processing, but current clinical tests appear to lack sufficient sensitivity to detect subtle impairments. Immersive virtual reality (VR) offers a new means to acquire measures of perceptual-motor responses to moving visual stimuli that require rapid conflict resolution, but their test-retest reliability has not yet been demonstrated. Repeated measures. We analyzed data from 19 healthy young adults who performed a 40-trial VR test on three consecutive days. We focused on response time (RT) and perceptual latency (PL) for eye, neck, arm, and whole-body step displacements involved in executing a reaching/lunging movement in a right or left direction toward a peripherally located virtual target. Measures of RT and PL included a 40-trial mean, an intra-individual variability (IIV) value, and a rate correct score (RCS) that incorporated both response duration and accuracy. Most mean and IIV values for PL and RT demonstrated a positive distributional skew that was substantially reduced by natural logarithm transformation. While a learning effect was evident between sessions 1 and 2 for 7 of 8 mean PL and RT measures, 3-session intraclass correlation coefficient (ICC) values were moderate to excellent for 15 of 16 transformed PL and RT measures (range: .618 to .922). The composite RCS metric did not require transformation for either PL or RT, whose respective 3-session ICC values were .877 and .851. This moderate to excellent test-retest reliability for various VR measures of perceptual-motor function, combined with evidence of their validity from both past and future research, suggest that these measures can advance clinical detection of impaired brain processing and longitudinal assessments of potentially modifiable performance deficiencies.


Assuntos
Desempenho Psicomotor , Realidade Virtual , Adulto Jovem , Humanos , Reprodutibilidade dos Testes , Tempo de Reação , Encéfalo
5.
Front Sports Act Living ; 5: 1046572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761780

RESUMO

Introduction: A lack of obvious long-term effects of concussion on standard clinical measures of behavioral performance capabilities does not preclude the existence of subtle neural processing impairments that appear to be linked to elevated risk for subsequent concussion occurrence, and which may be associated with greater susceptibility to progressive neurodegenerative processes. The purpose of this observational cohort study was to assess virtual reality motor response variability and survey responses as possible indicators of suboptimal brain function among military cadets and college athletes with self-reported history of concussion (HxC). Methods: The cohort comprised 75 college students (20.7 ± 2.1 years): 39 Reserve Officer Training Corp (ROTC) military cadets (10 female), 16 football players, and 20 wrestlers; HxC self-reported by 20 (29.2 ± 27.1 months prior, range: 3-96). A virtual reality (VR) test involving 40 lunging/reaching responses to horizontally moving dots (filled/congruent: same direction; open/incongruent: opposite direction) was administered, along with the Sport Fitness and Wellness Index (SFWI) survey. VR Dispersion (standard deviation of 12 T-scores for neck, upper extremity, and lower extremity responses to congruent vs. incongruent stimuli originating from central vs. peripheral locations) and SFWI response patterns were the primary outcomes of interest. Results: Logistic regression modeling of VR Dispersion (range: 1.5-21.8), SFWI (range: 44-100), and an interaction between them provided 81% HxC classification accuracy (Model χ 2[2] = 26.03, p < .001; Hosmer & Lemeshow χ 2[8] = 1.86, p = .967; Nagelkerke R 2 = .427; Area Under Curve = .841, 95% CI: .734, .948). Binary modeling that included VR Dispersion ≥3.2 and SFWI ≤86 demonstrated 75% sensitivity and 86% specificity with both factors positive (Odds Ratio = 17.6, 95% CI: 5.0, 62.1). Discussion/Conclusion: Detection of subtle indicators of altered brain processes that might otherwise remain unrecognized is clearly important for both short-term and long-term clinical management of concussion. Inconsistency among neck, upper extremity, and lower extremity responses to different types of moving visual stimuli, along with survey responses suggesting suboptimal well-being, merit further investigation as possible clinical indicators of persisting effects of concussion that might prove to be modifiable.

6.
Front Sports Act Living ; 4: 989799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385777

RESUMO

Background: Integrated movement and cognitive load paradigms are used to expose impairments associated with concussion and musculoskeletal injury. There is currently little information on the discriminatory nature of dual-task complexity and the relative influence of physical exertion on cognitive outcomes. Purpose: Assess cognitive performance while under motor conditions of increasing complexity before and after a standardized exercise protocol. Methods: 34 participants were recruited (17 male and 17 female; 24 ± 1.4 yrs). A modified Eriksen flanker test was used to assess cognitive performance under four conditions (seated, single-leg stance, walking, and lateral stepping) before and after a 20-min moderate-to vigorous intensity treadmill protocol. The flanker test consisted of 20 sets of 5-arrow configurations, appearing in random order. To complete the response to cognitive stimulus, participants held a smartphone horizontally and were instructed to respond as quickly and as accurately as possible by tilting the device in the direction corresponding to the orientation of the middle arrow. The metrics used for analysis included average reaction time (ms), inverse efficiency index (average reaction time penalized for incorrect responses), and conflict effect (the average time cost of responding to an incongruent repetition vs. a congruent repetition). Mixed effects (condition by time) RMANOVAs were conducted to examine the effects of motor task complexity and physical exertion on cognitive performance. Results: There was a condition by time interaction for inverse efficiency index (p < 0.001), in which participants displayed higher cognitive efficiency for the pre-activity lateral stepping condition compared to the other three conditions (Cohen's d = 1.3-1.6). For reaction time and conflict effect, there were main effects for condition (p = 0.004 and 0.006, respectively), in which performance during lateral stepping was improved in relation to the seated condition (reaction time Cohen's d = 0.68; conflict effect Cohen's d = 0.64). Conclusion: Participants tended to display better dual-task cognitive performance under more stimulating or complex motor tasks before physical exertion, likely associated with the inverted-U arousal-performance relationship. When using dual-task assessments, clinicians should be mindful of the accompanying motor task and baseline exertion levels and their potential to disrupt or optimize cognitive performance.

7.
J Sport Rehabil ; 31(8): 1023-1030, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35728805

RESUMO

CONTEXT: An Optimizing Performance through Intrinsic Motivation and Attention for Learning theory-based motor learning intervention delivering autonomy support and enhanced expectancies (EE) shows promise for reducing cognitive-motor dual-task costs, or the relative difference in primary task performance when completed with and without a secondary cognitive task, that facilitate adaptive injury-resistant movement response. The current pilot study sought to determine the effectiveness of an autonomy support versus an EE-enhanced virtual reality motor learning intervention to reduce dual-task costs during single-leg balance. DESIGN: Within-subjects 3 × 3 trial. METHODS: Twenty-one male and 24 female participants, between the ages of 18 and 30 years, with no history of concussion, vertigo, lower-extremity surgery, or lower-extremity injuries the previous 6 months, were recruited for training sessions on consecutive days. Training consisted of 5 × 8 single-leg squats on each leg, during which all participants mimicked an avatar through virtual reality goggles. The autonomy support group chose an avatar color, and the EE group received positive kinematic biofeedback. Baseline, immediate, and delayed retention testing consisted of single-leg balancing under single- and dual-task conditions. Mixed-model analysis of variances compared dual-task costs for center of pressure velocity and SD between groups on each limb. RESULTS: On the right side, dual-task costs for anterior-posterior center of pressure mean and SD were reduced in the EE group (mean Δ = -51.40, Cohen d = 0.80 and SD Δ = -66.00%, Cohen d = 0.88) compared with the control group (mean Δ = -22.09, Cohen d = 0.33 and SD Δ = -36.10%, Cohen d = 0.68) from baseline to immediate retention. CONCLUSIONS: These findings indicate that EE strategies that can be easily implemented in a clinic or sport setting may be superior to task-irrelevant AS approaches for influencing injury-resistant movement adaptations.


Assuntos
Biorretroalimentação Psicológica , Desempenho Psicomotor , Humanos , Masculino , Feminino , Recém-Nascido , Desempenho Psicomotor/fisiologia , Estudos de Viabilidade , Projetos Piloto , Análise e Desempenho de Tarefas
8.
J Sports Sci Med ; 21(1): 104-111, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35250339

RESUMO

To examine the isolated and combined effects of sex and perceptual-motor function on single-leg squatting mechanics in males and females. We employed a cross-sectional design in a research laboratory. Fifty-eight females (22.2 ± 3.5 yrs, 1.60 ± .07 m, 64.1 ± 13.0 kg) and 35 males (23.5 ± 5.0 yrs, 1.80 ± .06m, 84.7 ± 15.3 kg) free from time-loss injury in the six months prior, vertigo, and vestibular conditions participated in this study. Independent variables were sex, perceptual-motor metrics (reaction time, efficiency index, conflict discrepancy), and interaction effects. Dependent variables were peak frontal plane angles of knee projection, ipsilateral trunk flexion, and contralateral pelvic drop during single-leg squatting. After accounting for the sex-specific variance and perceptual-motor function effects on frontal plane squatting kinematics, female sex amplified the associations of: higher reaction time, lower efficiency index, and higher conflict discrepancy with greater right ipsilateral peak trunk lean (R2 = .13; p = .05); higher reaction time, lower efficiency index, and higher conflict discrepancy with decreased right contralateral pelvic drop (R2 = .22; p < .001); higher reaction time and lower conflict discrepancy with greater right frontal plane knee projection angle (R2 = .12; p = .03); and higher reaction time with greater left frontal plane knee projection angle (R2 = .22; p < .001). Female sex amplified the relationship between perceptual-motor function and two-dimensional frontal plane squatting kinematics. Future work should determine the extent to which perceptual-motor improvements translate to safer movement strategies.


Assuntos
Perna (Membro) , Postura , Estudos Transversais , Feminino , Humanos , Joelho , Articulação do Joelho , Masculino
10.
Percept Mot Skills ; 129(2): 289-306, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35081817

RESUMO

Resting heart rate variability (HRV) may be a useful index of both brain-based executive function and general health. Our purpose in this study was to quantify relationships among HRV, perceptual-motor performance metrics, and wellness survey responses. A cohort of 32 male Reserve Officer Training Corp (ROTC) cadets completed a dual-task upper extremity reaction time (UERT) test, two tests of whole-body reactive agility, and a 10-item wellness survey that produced a 0-100 Overall Wellness Index (OWI). We averaged participants' resting HRV measurements twice per week over 10 weeks to derive an intra-individual grand mean (HRV-IIGM) and over a series of days we calculated an intra-individual coefficient of variation (HRV-IICV). We used median values for the two HRV metrics (HRV-IIGM and HRV-IICV) to separate the cadets into equal-sized high and low HRV groups to form the dependent variable for logistic regression analyses. We found a significant inverse relationship between HRV-IIGM and HRV-IICV (r = -0.723, p < .001). Differences in UERT in the left versus right visual hemifields (L-R Diff) and OWI scores were strongly related to both HRV-IIGM ≤ 4.49 and HRV-IICV ≥ 6.95%. Logistic regression models that included L-R Diff and OWI showed 71% classification accuracy for HRV-IIGM (Model χ2 [2] = 12.47, p = .002, Nagelkerke R2 = 0.430) and 81% classification accuracy for HRV-IICV (Model χ2 [2] = 14.88, p = .001, Nagelkerke R2 = 0.496). These findings suggest that resting HRV, perceptual-motor efficiency, and overall wellness are highly interrelated, supporting a multi-factor biopsychosocial assessment to guide the design and implementation of interventions to maximize operational effectiveness for ROTC cadets and other military personnel.


Assuntos
Militares , Frequência Cardíaca , Humanos , Masculino , Militares/educação , Militares/psicologia
11.
Front Sports Act Living ; 3: 733567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746776

RESUMO

Clinical prediction models are useful in addressing several orthopedic conditions with various cohorts. American football provides a good population for attempting to predict injuries due to their relatively high injury rate. Physical performance can be assessed a variety of ways using an assortment of different tests to assess a diverse set of metrics, which may include reaction time, speed, acceleration, and deceleration. Asymmetry, the difference between right and left performance has been identified as a possible risk factor for injury. The purpose of this study was to determine the whole-body reactive agility metrics that would identify Division I football players who were at elevated risk for core, and lower extremity injuries (CLEI). This cohort study utilized 177 Division I football players with a total of 57 CLEI suffered who were baseline tested prior to the season. Single-task and dual-task whole-body reactive agility movements in lateral and diagonal direction reacting to virtual reality targets were analyzed separately. Receiver operator characteristic (ROC) analyses narrowed the 34 original predictor variables to five variables. Logistic regression analysis determined the three strongest predictors of CLEI for this cohort to be: lateral agility acceleration asymmetry, lateral flanker deceleration asymmetry, and diagonal agility reaction time average. Univariable analysis found odds ratios to range from 1.98 to 2.75 for these predictors of CLEI. ROC analysis had an area under the curve of 0.702 for any combination of two or more risk factors produced an odds ratio of 5.5 for risk of CLEI. These results suggest an asymmetry of 8-15% on two of the identified metrics or a slowed reaction time of ≥0.787 s places someone at increased risk of injury. Sixty-three percent (36/57) of the players who sustained an injury had ≥2 positive predictors In spite of the recognized limitation, these finding support the belief that whole-body reactive agility performance can identify Division I football players who are at elevated risk for CLEI.

12.
Orthop J Sports Med ; 9(10): 23259671211051722, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34722788

RESUMO

BACKGROUND: After a sport-related concussion (SRC), the risk for lower extremity injury is approximately 2 times greater, and the risk for another SRC may be as much as 3 to 5 times greater. PURPOSE: To assess the predictive validity of screening methods for identification of individual athletes who possess an elevated risk of SRC. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: Metrics derived from a smartphone flanker test software application and self-ratings of both musculoskeletal function and overall wellness were acquired from American high school and college football players before study participation. Occurrences of core or lower extremity injury (CLEI) and SRC were documented for all practice sessions and games for 1 season. Receiver operating characteristic and logistic regression analyses were used to identify variables that provided the greatest predictive accuracy for CLEI or SRC occurrence. RESULTS: Overall, there were 87 high school and 74 American college football players included in this study. At least 1 CLEI was sustained by 45% (39/87) of high school players and 55% (41/74) of college players. Predictors of CLEI included the flanker test conflict effect ≥69 milliseconds (odds ratio [OR], 2.12; 90% CI, 1.24-3.62) and a self-reported lifetime history of SRC (OR, 1.70; 90% CI, 0.90-3.23). Of players with neither risk factor, only 38% (29/77) sustained CLEI compared with 61% (51/84) of players with 1 or both of the risk factors (OR, 2.56; 90% CI, 1.50-4.36). SRC was sustained by 7 high school players and 3 college players. Predictors of SRC included the Overall Wellness Index score ≤78 (OR, 9.83; 90% CI, 3.17-30.50), number of postconcussion symptoms ≥4 (OR, 8.35; 90% CI, 2.71-25.72), the Sport Fitness Index score ≤78 (OR, 5.16; 90% CI, 1.70-15.65), history of SRC (OR, 4.03; 90% CI, 1.35-12.03), and the flanker test inverse efficiency ratio ≥1.7 (OR, 3.19; 90% CI, 1.08-9.47). CONCLUSION: Survey responses and smartphone flanker test metrics predicted greater injury incidence among individual football players classified as high-risk compared with that for players with a low-risk profile.

13.
Front Sports Act Living ; 3: 729729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34661098

RESUMO

Standard clinical assessments of mild traumatic brain injury are inadequate to detect subtle abnormalities that can be revealed by sophisticated diagnostic technology. An association has been observed between sport-related concussion (SRC) and subsequent musculoskeletal injury, but the underlying neurophysiological mechanism is not currently understood. A cohort of 16 elite athletes (10 male, 6 female), which included nine individuals who reported a history of SRC (5 male, 4 female) that occurred between 4 months and 8 years earlier, volunteered to participate in a 12-session program for assessment and training of perceptual-motor efficiency. Performance metrics derived from single- and dual-task whole-body lateral and diagonal reactive movements to virtual reality targets in left and right directions were analyzed separately and combined in various ways to create composite representations of global function. Intra-individual variability across performance domains demonstrated very good SRC history classification accuracy for the earliest 3-session phase of the program (Reaction Time Dispersion AUC = 0.841; Deceleration Dispersion AUC = 0.810; Reaction Time Discrepancy AUC = 0.825, Deceleration Discrepancy AUC = 0.794). Good earliest phase discrimination was also found for Composite Asymmetry between left and right movement directions (AUC = 0.778) and Excursion Average distance beyond the minimal body displacement necessary for virtual target deactivation (AUC = 0.730). Sensitivity derived from Youden's Index for the 6 global factors ranged from 67 to 89% and an identical specificity value of 86% for all of them. Median values demonstrated substantial improvement from the first 3-session phase to the last 3-session phase for Composite Asymmetry and Excursion Average. The results suggest that a Composite Asymmetry value ≥ 0.15 and an Excursion Average value ≥ 7 m, provide reasonable qualitative approximations for clinical identification of suboptimal perceptual-motor performance. Despite acknowledged study limitations, the findings support a hypothesized relationship between whole-body reactive agility performance and functional connectivity among brain networks subserving sensory perception, cognitive decision-making, and motor execution. A complex systems approach appears to perform better than traditional data analysis methods for detection of subtle perceptual-motor impairment, which has the potential to advance both clinical management of SRC and training for performance enhancement.

14.
J Clin Transl Res ; 7(1): 100-107, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34104813

RESUMO

BACKGROUND: Efficient neural processing of visuospatial and proprioceptive input appears to be crucial for avoidance of sport injury. As such, clinically-feasible tests are needed to identify deficiencies found by advanced neuroimaging and electrophysiological tests. Three-dimensional motion capture in a laboratory setting is currently the gold standard for measurement of human movement parameters but is costly and requires extensive training. Non-immersive virtual reality systems with body motion tracking, such as TRAZER, may provide a clinically-feasible and portable means of acquiring similar variables. Test-retest reliability and concurrent validity of these systems are currently lacking. AIM: The aim of the study was to assess the concurrent validity of the TRAZER single-camera system with 3D motion capture system and to assess the test-retest reliability of TRAZER's whole-body reactive agility metrics. METHODS: Participants - For validity, 13 healthy individuals (24.8±3.1 years, 170.0±7.7 cm, 70.0±14.2 kg); for reliability, 18 healthy individuals (23.3±2.5 years, 168.2±11.2 cm, 78.2±17.8 kg). Design - Validity was a single-session cross-sectional study. Reliability was a 3 consecutive day test-retest study. Setting-Controlled laboratory study. Intervention - Assessments utilized randomized movements in eight directions for forty total repetitions as designated by the TRAZER system. TRAZER protocol was simultaneously tracked by Vicon Motion Capture and the TRAZER system. Reliability data were captured on three consecutive days by the TRAZER system. Main Outcome Measures - Maximum acceleration, maximum velocity, and total distance were recorded for validation. In addition to these measures, maximum deceleration, average velocity, average acceleration, average deceleration, and average reaction time were collected for reliability. RESULTS: Overall, a lack of agreement exists between maximum outputs for TRAZER and 3D motion capture (velocity r=0.808, acceleration r=-0.090), but total distance correlation was high (r =.961). ICC values between days 1-2-3 for average measures were high (average velocity=0.847, average acceleration=0.919, and average deceleration=0.948) with the exception of average reaction time being fair (ICC=0.536). ICCs for maximum measures showed a much smaller correlation between days (velocity=0.654, acceleration=0.171, and deceleration=0.416). CONCLUSIONS: Even though there is a lack of strong concurrent validity between measures obtained from TRAZER and 3D motion capture systems, there is strong test-retest reliability of the TRAZER system. The applicability of these findings makes TRAZER clinically relevant in scenarios requiring pre- and post-testing for return to play decisions, or monitoring of a training regimen where demonstration of validation to a gold standard measurement is not relevant. RELEVANCE FOR PATIENTS: When test-retest capability is desired, such as in return-to-play protocols following an injury, Trazer is a reliable option.

15.
J Sport Rehabil ; 30(6): 844-849, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33418536

RESUMO

CONTEXT: Sport-related concussion (SRC) elevates risk for subsequent injury, which may relate to impaired perceptual-motor processes that are potentially modifiable. OBJECTIVE: To assess a possible upper-extremity (UE) training effect on whole-body (WB) reactive agility performance among elite athletes with history of SRC (HxSRC) and without such history of SRC. DESIGN: Cohort study. SETTING: Residential training center. PARTICIPANTS: Elite athletes (12 males and 8 females), including 10 HxSRC and 10 without such history of SRC. INTERVENTION: One-minute training sessions completed 2 to 3 times per week over a 3-week period involved verbal identification of center arrow direction for 10 incongruent and 10 congruent flanker test trials with simultaneous reaching responses to deactivate illuminated buttons. MAIN OUTCOME MEASURES: Pretraining and posttraining assessments of UE and WB reactive responses included flanker test conflict effect (incongruent minus congruent reaction time) and WB lateral average asymmetry derived from reaction time, speed, acceleration, and deceleration in opposite directions. Discrimination was assessed by receiver operating characteristic analysis, and training effect was assessed by repeated-measures analysis of variance. RESULTS: Pretraining discrimination between HxSRC and without such history of SRC was greatest for conflict effect ≥80 milliseconds and WB lateral average asymmetry ≥18%. Each athlete completed 6 training sessions, which improved UE mean reaction time from 767 to 646 milliseconds (P < .001) and reduced mean conflict effect from 96 to 53 milliseconds (P = .039). A significant group × trial interaction was evident for WB lateral average asymmetry (P = .004), which was reduced from 24.3% to 12.5% among those with HxSRC. CONCLUSIONS: Suboptimal perceptual-motor performance may represent a subtle long-term effect of concussion that is modifiable through UE training, which appears to improve WB reactive capabilities.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Atletas , Estudos de Coortes , Feminino , Humanos , Masculino , Extremidade Superior
16.
Percept Mot Skills ; 128(2): 714-730, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33357092

RESUMO

Recent research findings have strongly suggested that sport-related concussion (SRC) increases risk for subsequent injury of any type, as well as a potential for long-term adverse effects on neurological and psychological well-being. The primary purpose of this study was to explore the reliability and discriminatory power of clinical testing procedures for detecting persisting effects of SRC. We used a cross-sectional study design to assess both self-reported symptoms commonly associated with post-concussion syndrome, and the effects of mental or physical activity on metrics derived from a smartphone app designed to test perceptual-motor responses. Among 30 physically active college students, 15 participants reported a SRC occurrence prior to testing (M time-since-injury = 4.0 years, SD = 3.1, range = 5 months to 11 years). We found good test-retest reliability for key metrics derived from the smartphone app (ICC ≥ .70); and the internal consistency for the Overall Wellness Index (OWI) for 10 categories of 82 post-concussion symptoms was ideal (Cronbach's α ≥ .80). Moderate intensity treadmill running demonstrated the strongest differential effect on perceptual-motor responses between participants with a history of SRC (HxSRC) and those with no such history (No SRC), which was best represented by the speed-accuracy trade-off quantified by the inverse efficiency index (IEI: group X trial interaction p = .055). Self-reported OWI symptoms ≥4 and post-physical activity IEI ≥ 568 ms provided the strongest discrimination between HxSRC and NoSRC participants (≥1 versus 0: OR = 9.75). Our findings suggest that persisting effects from a remote SRC occurrence can be detected by easily administered screening procedures that have the potential to identify individual athletes who might derive benefit from interventions to restore their optimal function and well-being.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Aplicativos Móveis , Estudos Transversais , Humanos , Reprodutibilidade dos Testes , Smartphone
17.
J Athl Train ; 55(6): 594-600, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32396473

RESUMO

CONTEXT: Detection of subtle changes in brain sensorimotor processes may enable clinicians to identify athletes who would derive the greatest benefit from interventions designed to reduce the risk for future injury and progressive neurologic or musculoskeletal dysfunction. OBJECTIVE: To develop a generalizable statistical model for identifying athletes who possess subtle alterations in sensorimotor processes that may be due to previous concussion. DESIGN: Cross-sectional study. SETTING: Residential Olympic Training Center sports medicine clinic. PATIENTS OR OTHER PARTICIPANTS: A primary cohort of 35 elite athletes and a secondary cohort of 40 elite athletes who performed identical tests the preceding year. INTERVENTION(S): Two upper extremity tests of visual-motor reaction time and 2 tests of whole-body reactive agility were administered. The whole-body tests required lateral or diagonal responses to virtual-reality targets, which provided measures of reaction time, speed, acceleration, and deceleration. MAIN OUTCOME MEASURE(S): Sport-related concussion history, which was reported by 54% (n = 19) of the athletes in the primary cohort and 45% (n = 18) of the athletes in the secondary cohort. RESULTS: Univariable analyses identified 12 strong predictors of sport-related concussion history, which we combined to create a composite metric with maximum predictive value. Composite lateral asymmetry for whole-body reactive movements and persisting effects of previous musculoskeletal injury yielded a logistic regression model with exceptionally good discrimination (area under the curve = 0.845) and calibration (predicted-observed probabilities within 7 subgroups: r = 0.959, P = .001). Application of the derived model to compatible data acquired from another cohort of elite athletes demonstrated very good discrimination (area under the curve = 0.772) and calibration (within 8 subgroups: r = 0.849, P = .008). CONCLUSIONS: Asymmetry in whole-body reactive movement capabilities may be a manifestation of a subtle abnormality in the functional connectivity of brain networks that might be relevant to previously reported associations between sport-related concussion history and musculoskeletal injury occurrence.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Retroalimentação Sensorial/fisiologia , Lateralidade Funcional , Desempenho Psicomotor , Adulto , Atletas , Traumatismos em Atletas/fisiopatologia , Traumatismos em Atletas/prevenção & controle , Traumatismos em Atletas/psicologia , Concussão Encefálica/fisiopatologia , Concussão Encefálica/prevenção & controle , Estudos Transversais , Feminino , Humanos , Masculino , Modelos Estatísticos , Neurofisiologia/métodos , Tempo de Reação/fisiologia , Medição de Risco , Fatores de Risco
18.
Sports (Basel) ; 7(5)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035597

RESUMO

This case report demonstrates the effects of sport-related concussion (SRC) on heart rate variability (HRV) in an American college football player. Daily measures of resting, ultra-short natural logarithm of the root mean square of successive differences (LnRMSSD), subjective wellbeing, and Player Load were obtained each training day throughout a 4-week spring camp and 4 weeks of preseason training. SRC occurred within the first 2 weeks of the preseason. During spring camp and preseason pre-SRC, the athlete demonstrated minimal day-to-day fluctuations in LnRMSSD, which increased post-SRC (LnRMSSD coefficient of variation pre-SRC ≤ 3.1%, post-SRC = 5.8%). Moderate decrements in daily-averaged LnRMSSD were observed post-SRC relative to pre-SRC (Effect Size ± 90% Confidence Interval = -1.12 ± 0.80), and the 7-day rolling average fell below the smallest worthwhile change for the remainder of the preseason. LnRMSSD responses to SRC appeared similar to trends associated with stress and training fatigue. Therefore, performance and sports medicine staff should maintain regular communication regarding player injury and fatigue status so that HRV can be interpreted in the appropriate context. Detection and monitoring of autonomic dysregulation post-SRC may require near-daily assessment, as LnRMSSD showed greater daily fluctuations rather than chronic suppression following the head injury.

19.
J Athl Train ; 54(5): 489-496, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31084505

RESUMO

CONTEXT: Exposure to game conditions and previous injury are known to increase the risk of injury, but little available evidence pertains to modifiable factors that may mediate dynamic control of body segments, such as core muscle endurance and neurocognitive capabilities. OBJECTIVE: To identify potentially modifiable factors associated with the occurrence of a core or lower extremity sprain or strain during participation in football. DESIGN: Prospective cohort study. SETTING: National Collegiate Athletic Association Division I Football Bowl Subdivision football program. PATIENTS OR OTHER PARTICIPANTS: All team members who participated for the duration of 1 season or both of 2 consecutive seasons (n = 142). MAIN OUTCOME MEASURE(S): Predictors of injury occurrence were derived from analysis of preparticipation data that included the results of front plank hold (FPH) and neurocognitive tests. Receiver operating characteristic analysis was used to establish binary classifications of injury risk. Logistic regression analyses were conducted to build multivariable injury-prediction models for optimal discriminatory power. RESULTS: Exceptionally good discrimination between injured and noninjured participants was provided by models that included the results of the FPH and ImPACT neurocognitive tests. A high level of exposure to game conditions and injury during the preceding year magnified the effects of other risk factors. A model for identifying players with an elevated risk for injury occurrence during both of 2 consecutive seasons included FPH ≤120 seconds, verbal memory score ≤87, composite reaction time ≥560 milliseconds, and starter status. Having ≥2 of the 4 risk factors demonstrated 44% sensitivity and 91% specificity, with an odds ratio = 8.40. CONCLUSIONS: Core muscle endurance and neurocognitive processes may both play important roles in generating anticipatory muscle stiffness during participation in collegiate football. These factors may be particularly important for players who sustained an injury during the previous year and those who have a high level of game exposure.


Assuntos
Traumatismos em Atletas , Treino Aeróbico/métodos , Futebol Americano/lesões , Extremidade Inferior/lesões , Tempo de Reação , Entorses e Distensões , Adulto , Traumatismos em Atletas/epidemiologia , Traumatismos em Atletas/prevenção & controle , Humanos , Masculino , Estudos Prospectivos , Medição de Risco/métodos , Fatores de Risco , Entorses e Distensões/epidemiologia , Entorses e Distensões/fisiopatologia , Entorses e Distensões/prevenção & controle , Entorses e Distensões/psicologia , Estados Unidos , Universidades
20.
J Athl Train ; 53(8): 738-751, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30138047

RESUMO

CONTEXT:: The advent of Web-based sports injury surveillance via programs such as the High School Reporting Information Online system and the National Collegiate Athletic Association Injury Surveillance Program has aided the acquisition of football injury data. OBJECTIVE:: To describe the epidemiology of injuries sustained in high school football in the 2005-2006 through 2013-2014 academic years and collegiate football in the 2004-2005 through 2013-2014 academic years using Web-based sports injury surveillance. DESIGN:: Descriptive epidemiology study. SETTING:: Online injury surveillance from football teams of high school boys (annual average = 100) and collegiate men (annual average = 43). PATIENTS OR OTHER PARTICIPANTS:: Football players who participated in practices and competitions during the 2005-2006 through 2013-2014 academic years in high school or the 2004-2005 through 2013-2014 academic years in college. MAIN OUTCOME MEASURE(S):: Athletic trainers collected time-loss injury (≥24 hours) and exposure data. Injury rates per 1000 athlete-exposures (AEs), injury rate ratios (IRRs) with 95% confidence intervals (CIs), and injury proportions by body site and diagnosis were calculated. RESULTS:: The High School Reporting Information Online system documented 18 189 time-loss injuries during 4 539 636 AEs; the National Collegiate Athletic Association Injury Surveillance Program documented 22 766 time-loss injuries during 3 121  476 AEs. The injury rate was higher among collegiate than high school (7.29 versus 4.01/1000 AEs; IRR = 1.82; 95% CI = 1.79, 1.86) athletes. Most injuries occurred during competitions in high school (53.2%) and practices in college (60.9%). The competition injury rate was higher than the practice injury rate among both high school (IRR = 5.62; 95% CI = 5.46, 5.78) and collegiate (IRR = 6.59; 95% CI = 6.41, 6.76) players. Most injuries at both levels affected the lower extremity and the shoulder/clavicle and were diagnosed as ligament sprains and muscle/tendon strains. However, concussion was a common injury during competitions among most positions. CONCLUSIONS:: Injury rates were higher in college than in high school and higher for competitions than for practices. Concussion was a frequent injury sustained during competitions, which confirms the need to develop interventions to mitigate its incidence and severity.


Assuntos
Traumatismos em Atletas/epidemiologia , Futebol Americano/lesões , Internet , Atletas , Concussão Encefálica/epidemiologia , Coleta de Dados , Humanos , Incidência , Masculino , Instituições Acadêmicas , Lesões dos Tecidos Moles/epidemiologia , Entorses e Distensões/epidemiologia , Estudantes , Estados Unidos/epidemiologia , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA