Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024462

RESUMO

Surveillance of triatomines or kissing bugs (Hemiptera: Reduviidae: Triatominae), the insect vectors of Trypanosoma cruzi, a Chagas disease agent, is hindered by the lack of an effective trap. To develop a kissing bug trap, we made iterative improvements over 3 years on a basic design resulting in 7 trap prototypes deployed across field sites in Texas, United States and Northern Mexico, yielding the capture of 325 triatomines of 4 species (Triatoma gerstaeckeri [Stål], T. sanguisuga [LeConte], T. neotomae [Neiva], and T. rubida [Uhler]). We began in 2019 with vertical transparent tarpaulin panel traps illuminated with artificial light powered by AC current, which were successful in autonomous trapping of flying triatomines, but were expensive, labor-intensive, and fragile. In 2020, we switched to white LED lights powered by a solar cell. We tested a scaled-down version of the vertical panel traps, a commercial cross-vane trap, and a multiple-funnel trap. The multiple-funnel traps captured 2.6× more kissing bugs per trap-day than cross-vane traps and approached the performance of the vertical panel traps in number of triatomines captured, number of triatomines per trap-day and triatomines per arthropod bycatch. Multiple-funnel traps required the least labor, were more durable, and had the highest triatomines per day per cost. Propylene glycol in the collection cups effectively preserved captured triatomines allowing for molecular detection of T. cruzi. The trapping experiments established dispersal patterns for the captured species. We conclude that multiple-funnel traps with solar-powered LED lights should be considered for adoption as surveillance and potentially mass-trapping management tools for triatomines.

2.
Cell Rep ; 43(5): 114127, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38652660

RESUMO

Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.


Assuntos
Ebolavirus , Predisposição Genética para Doença , Doença pelo Vírus Ebola , Locos de Características Quantitativas , Animais , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/patologia , Locos de Características Quantitativas/genética , Ebolavirus/patogenicidade , Ebolavirus/genética , Camundongos , Camundongos Knockout , Mapeamento Cromossômico , Fígado/patologia , Fígado/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Feminino , Masculino
3.
Cell ; 187(6): 1547-1562.e13, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38428424

RESUMO

We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or ∼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.


Assuntos
Genoma , Primatas , Animais , Humanos , Sequência de Bases , Primatas/classificação , Primatas/genética , Evolução Biológica , Análise de Sequência de DNA , Variação Estrutural do Genoma
4.
Vet Pathol ; 61(2): 316-323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37830482

RESUMO

Owl monkeys are small nocturnal new world primates in the genus Aotus that are most used in biomedical research for malaria. Cardiomyopathy and nephropathy are well-described common diseases contributing to their morbidity and mortality; less is known about lesions affecting the gastrointestinal tract. Records from a 14-year period (2008-2022) at the Keeling Center for Comparative Medicine and Research were queried to identify instances of spontaneous gastrointestinal disease that directly contributed to the cause of death from the 235 adult owl monkeys submitted for necropsy. Of the 235, 10.6% (25/235) had gastrointestinal disease listed as a significant factor that contributed to morbidity and mortality. Diagnoses included candidiasis (3/25), gastric bloat (4/25), and intestinal incarceration and ischemia secondary (11/25), which included intussusception (4/25), mesenteric rent (3/25), strangulating lipoma (2/25), intestinal torsion (1/25), and an inguinal hernia (1/25). Intestinal adenocarcinomas affecting the jejunum (4/25) were the most common neoplasia diagnosis. Oral squamous cell carcinoma (1/25) and intestinal lymphoma (2/25) were also diagnosed. This report provides evidence of spontaneous lesions in the species that contribute to morbidity and mortality.


Assuntos
Carcinoma de Células Escamosas , Gastroenteropatias , Neoplasias Bucais , Animais , Aotidae , Carcinoma de Células Escamosas/veterinária , Neoplasias Bucais/veterinária , Gastroenteropatias/veterinária
5.
Comp Med ; 73(3): 229-241, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268411

RESUMO

The vector-borne protozoal parasite Trypanosoma cruzi causes Chagas disease in humans and animals. This parasite is endemic to the southern United States where outdoor-housed NHP at biomedical facilities are at risk of infection. In addi- tion to the direct morbidity caused by T. cruzi, infected animals are of limited biomedical research use because infections can produce confounding pathophysiologic changes even in animals with no clinical disease. In part due to concerns for direct T. cruzi transmission between animals, infected NHP at some institutions have been culled, removed, or otherwise isolated from uninfected animal populations. However, data that document horizontal or vertical transmission in captive NHP in the United States are not available. To evaluate the potential for inter-animal transmission and to identify environmental factors that affect the distribution of new infections in NHPs, we conducted a retrospective epidemiologic study of a rhesus macaque ( Macaca mulatta ) breeding colony in south Texas. We used archived biologic samples and husbandry records to identify the time and location of macaque seroconversion. These data were used to perform a spatial analysis of how geographic location and animal associations affected the spread of disease and to infer the importance of horizontal or vertical routes of transmission. The majority of T. cruzi infections were spatially clustered, suggesting that environmental factors promoted vector exposure in various areas of the facility. Although we cannot not rule out horizontal transmission, our data suggest that horizontal transmission was not a critical route for spread for the disease. Vertical transmission was not a contributing factor in this colony. In conclusion, our findings suggest that local triatome vectors were the major source of T. cruzi infections in captive macaques in our colony. Therefore, limiting contact with vectors, rather than segregation of infected macaques, is a key strategy for disease prevention at institutions that house macaques outdoors in the southern United States.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Animais , Estados Unidos , Macaca mulatta , Estudos Retrospectivos , Doença de Chagas/epidemiologia , Doença de Chagas/veterinária
6.
Antimicrob Agents Chemother ; 67(5): e0013223, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37039666

RESUMO

Trypanosoma cruzi naturally infects a broad range of mammalian species and frequently results in the pathology that has been most extensively characterized in human Chagas disease. Currently employed treatment regimens fail to achieve parasitological cure of T. cruzi infection in the majority of cases. In this study, we have extended our previous investigations of more effective, higher dose, intermittent administration protocols using the FDA-approved drug benznidazole (BNZ), in experimentally infected mice and in naturally infected dogs and nonhuman primates (NHP). Collectively, these studies demonstrate that twice-weekly administration of BNZ for more than 4 months at doses that are ~2.5-fold that of previously used daily dosing protocols, provided the best chance to obtain parasitological cure. Dosing less frequently or for shorter time periods was less dependable in all species. Prior treatment using an ineffective dosing regimen in NHPs did not prevent the attainment of parasitological cure with an intensified BNZ dosing protocol. Furthermore, parasites isolated after a failed BNZ treatment showed nearly identical susceptibility to BNZ as those obtained prior to treatment, confirming the low risk of induction of drug resistance with BNZ and the ability to adjust the treatment protocol when an initial regimen fails. These results provide guidance for the use of BNZ as an effective treatment for T. cruzi infection and encourage its wider use, minimally in high value dogs and at-risk NHP, but also potentially in humans, until better options are available.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Camundongos , Cães , Humanos , Animais , Tripanossomicidas/uso terapêutico , Tripanossomicidas/farmacologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Nitroimidazóis/uso terapêutico , Nitroimidazóis/farmacologia , Protocolos Clínicos , Primatas , Mamíferos
7.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945442

RESUMO

To better understand the pattern of primate genome structural variation, we sequenced and assembled using multiple long-read sequencing technologies the genomes of eight nonhuman primate species, including New World monkeys (owl monkey and marmoset), Old World monkey (macaque), Asian apes (orangutan and gibbon), and African ape lineages (gorilla, bonobo, and chimpanzee). Compared to the human genome, we identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. Across 50 million years of primate evolution, we estimate that 819.47 Mbp or ~27% of the genome has been affected by SVs based on analysis of these primate lineages. We identify 1,607 structurally divergent regions (SDRs) wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (CARDs, ABCD7, OLAH) and new lineage-specific genes are generated (e.g., CKAP2, NEK5) and have become targets of rapid chromosomal diversification and positive selection (e.g., RGPDs). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species for the first time.

8.
bioRxiv ; 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36778432

RESUMO

Trypanosoma cruzi naturally infects a broad range of mammalian species and frequently results in the pathology that has been most extensively characterized in human Chagas disease. Currently employed treatment regimens fail to achieve parasitological cure of T. cruzi infection in the majority of cases. In this study, we have extended our previous investigations of more effective, higher dose, intermittent administration protocols using the FDA-approved drug benznidazole (BNZ), in experimentally infected mice and in naturally infected dogs and non-human primates (NHP). Collectively these studies demonstrate that twice-weekly administration of BNZ for more than 4 months at doses that are ∻2.5-fold that of previously used daily dosing protocols, provided the best chance to obtain parasitological cure. Dosing less frequently or for shorter time periods was less dependable in all species. Prior treatment using an ineffective dosing regimen in NHPs did not prevent the attainment of parasitological cure with an intensified BNZ dosing protocol. Furthermore, parasites isolated after a failed BNZ treatment showed nearly identical susceptibility to BNZ as those obtained prior to treatment, confirming the low risk of induction of drug resistance with BNZ and the ability to adjust the treatment protocol when an initial regimen fails. These results provide guidance for the use of BNZ as an effective treatment for T. cruzi infection and encourage its wider use, minimally in high value dogs and at-risk NHP, but also potentially in humans, until better options are available.

9.
Cancer Prev Res (Phila) ; 16(1): 17-28, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36162136

RESUMO

We evaluated the cancer preventive efficacy of TAK-242, an inhibitor of Toll-like receptor 4 (TLR4), in a mouse model of hepatocellular carcinoma (HCC) occurring in the context of nonalcoholic steatohepatitis (NASH). We also assessed the cellular events associated with the preventive treatment efficacy. We tested oral administration of TAK-242, at clinically relevant but toxicity-reducing doses and scheduling, in mice with hepatocyte-specific deletion of Pten (HepPten-). The optimal dose and oral gavage formulation of TAK-242 were determined to be 30 mg/kg in 5% DMSO in 30% 2-hydroxypropyl-ß-cyclodextrin. Daily oral administration of 30 mg/kg TAK-242 over 18 weeks was well tolerated and resulted in reduced development of tumors (lesions > 7.5 mm3) in HepPten- mice. This effect was accompanied by reduced macrovesicular steatosis and serum levels of alanine aminotransferase. In addition, 30 mg/kg TAK-242 daily treatment of small preexisting adenomas (lesions < 7.5 mm3) over 18 weeks, significantly reduced their progression to HCC. RNA sequencing identified 220 hepatic genes significantly altered upon TAK-242 treatment, that significantly correlated with tumor burden. Finally, cell deconvolution analysis revealed that TAK-242 treatment resulted in reduced hepatic populations of endothelial cells and myeloid-derived immune cells (Kupffer cells, Siglec-H high dendritic cells, and neutrophilic granule protein high neutrophils), while the proportion of mt-Nd4 high hepatocytes significantly increased, suggesting a decrease in hepatic inflammation and concomitant increase in mitochondrial function and oxidative phosphorylation upon TLR4 inhibition. In conclusion, this study identified treatment strategies and novel molecular and cellular mechanisms associated with the prevention of HCC in the context of NASH that merit further investigations. PREVENTION RELEVANCE: Means to prevent development of HCC or progression of small adenomas to HCC in patients with NASH are urgently needed to reduce the growing mortality due to HCC. We characterized the chemopreventive effect of oral administration of the TLR4 inhibitor TAK-242 in a model of NASH-associated HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/prevenção & controle , Células Endoteliais , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptor 4 Toll-Like
10.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36182704

RESUMO

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Assuntos
Arterivirus , Febres Hemorrágicas Virais , Animais , Arterivirus/fisiologia , Febres Hemorrágicas Virais/veterinária , Febres Hemorrágicas Virais/virologia , Humanos , Macaca , Primatas , Zoonoses Virais , Internalização do Vírus , Replicação Viral
11.
Nat Microbiol ; 7(10): 1536-1546, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36065062

RESUMO

Trypanosoma cruzi, the agent of Chagas disease, probably infects tens of millions of people, primarily in Latin America, causing morbidity and mortality. The options for treatment and prevention of Chagas disease are limited and underutilized. Here we describe the discovery of a series of benzoxaborole compounds with nanomolar activity against extra- and intracellular stages of T. cruzi. Leveraging both ongoing drug discovery efforts in related kinetoplastids, and the exceptional models for rapid drug screening and optimization in T. cruzi, we have identified the prodrug AN15368 that is activated by parasite carboxypeptidases to yield a compound that targets the messenger RNA processing pathway in T. cruzi. AN15368 was found to be active in vitro and in vivo against a range of genetically distinct T. cruzi lineages and was uniformly curative in non-human primates (NHPs) with long-term naturally acquired infections. Treatment in NHPs also revealed no detectable acute toxicity or long-term health or reproductive impact. Thus, AN15368 is an extensively validated and apparently safe, clinically ready candidate with promising potential for prevention and treatment of Chagas disease.


Assuntos
Doença de Chagas , Pró-Fármacos , Tripanossomicidas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Primatas , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
12.
Viruses ; 13(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206909

RESUMO

Latent varicella zoster virus (VZV) has been detected in human adrenal glands, raising the possibility of virus-induced adrenal damage and dysfunction during primary infection or reactivation. Rare cases of bilateral adrenal hemorrhage and insufficiency associated with VZV reactivation have been reported. Since there is no animal model for VZV infection of adrenal glands, we obtained adrenal glands from two non-human primates (NHPs) that spontaneously developed varicella from primary simian varicella virus (SVV) infection, the NHP VZV homolog. Histological and immunohistochemical analysis revealed SVV antigen and DNA in the adrenal medulla and cortex of both animals. Adrenal glands were observed to have Cowdry A inclusion bodies, cellular necrosis, multiple areas of hemorrhage, and varying amounts of polymorphonuclear cells. No specific association of SVV antigen with ßIII-tubulin-positive nerve fibers was found. Overall, we found that SVV can productively infect NHP adrenal glands, and is associated with inflammation, hemorrhage, and cell death. These findings suggest that further studies are warranted to examine the contribution of VZV infection to human adrenal disease. This study also suggests that VZV infection may present itself as acute adrenal dysfunction with "long-hauler" symptoms of fatigue, weakness, myalgias/arthralgias, and hypotension.


Assuntos
Glândulas Suprarrenais/patologia , Glândulas Suprarrenais/virologia , Infecções por Herpesviridae/patologia , Herpesvirus Humano 3/patogenicidade , Glândulas Suprarrenais/citologia , Animais , Feminino , Infecções por Herpesviridae/virologia , Técnicas Histológicas , Macaca fascicularis/virologia , Masculino
13.
Comp Med ; 70(2): 152-159, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32183928

RESUMO

Chagas disease is a zoonotic vector-borne disease caused by infection with the protozoan parasite Trypanosoma cruzi. T. cruzi is found in Latin America and the Southern United States, where it infects many species, including humans and nonhuman primates (NHPs). NHPs are susceptible to natural infection and can develop clinical symptoms consistent with human disease, including Chagasic cardiomyopathy, gastrointestinal disease and transplacental transmission, leading to congenital infection. Due to evidence of Chagas transmission in Texas, this study hypothesized T. cruzi infection was present in a closed, outdoor-housed breeding colony of rhesus macaques (Macaca mulatta) located at a biomedical research facility in Central Texas. In addition, we questioned whether seropositive female rhesus macaques might experience reproductive complications consistent with maternal-fetal Chagas disease. The seroprevalence of T. cruzi infection in the colony was assessed using an Enzyme Linked Immunosorbant Assay (ELISA) to detect antibodies against Tc24 antigen as a screening assay, and a commercially available immunochromatographic test (Chagas Stat Pak) as a confirmatory assay. Retrospective serologic analysis was performed to confirm the status of all T. cruzi-infected animals between the years 2012 to 2016. The medical history of all seropositive and seronegative breeding females within the colony from 2012 to 2016 was reviewed to determine each animals' level of reproductive fitness. The percentage of T. cruzi-seropositive animals ranged from 6.7% to 9.7% in adult animals and 0% to 0.44% in juveniles or weanling animals, depending on the year. An overall 3.9% seroprevalence of T. cruzi infection was found in the total population. No significant differences in any measure of reproductive outcomes were identified between seropositive and seronegative females from 2012 to 2016. The lack of significant adverse reproductive outcomes reported here may help inform future management decisions regarding seropositive female rhesus macaques within breeding colonies.


Assuntos
Doença de Chagas/veterinária , Doenças dos Macacos , Resultado da Gravidez/veterinária , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Macaca mulatta , Masculino , Gravidez , Estudos Retrospectivos , Estudos Soroepidemiológicos , Trypanosoma cruzi/isolamento & purificação
14.
PLoS Biol ; 17(6): e3000304, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31181085

RESUMO

Individuals chronically infected with HIV-1 harbor complex viral populations within their bloodstreams. Recently, it has come to light that when these people infect others, the new infection is typically established by only one or a small number of virions from within this complex viral swarm. An important goal is to characterize the biological properties of HIV-1 virions that seed and exist early in new human infections because these are potentially the only viruses against which a prophylactic HIV-1 vaccine would need to elicit protection. This includes understanding how the Envelope (Env) protein of these virions interacts with the T-cell receptor CD4, which supports attachment and entry of HIV-1 into target cells. We examined early HIV-1 isolates for their ability to infect cells via the CD4 receptor of 15 different primate species. Primates were the original source of HIV-1 and now serve as valuable animal models for studying HIV-1. We find that most primary isolates of HIV-1 from the blood, including early isolates, are highly selective and enter cells through some primate CD4 receptor orthologs but not others. This phenotype is remarkably consistent, regardless of route of transmission, viral subtype, or time of isolation post infection. We show that the weak CD4 binding affinity of blood-derived HIV-1 isolates is what makes them sensitive to the small sequence differences in CD4 from one primate species to the next. To substantiate this, we engineered an early HIV-1 Env to have high, medium, or low binding affinity to CD4, and we show that it loses the ability to enter cells via the CD4 receptor of many primate species as the binding affinity gets weaker. Based on the phenotype of selective use of primate CD4, we find that weak CD4 binding appears to be a nearly universal property of HIV-1 circulating in the bloodstream. Therefore, weak binding to CD4 must be a selected and important property in the biology of HIV-1 in the body. We identify six primate species that encode CD4 receptors that fully support the entry of early HIV-1 isolates despite their low binding affinity for CD4. These findings will help inform long-standing efforts to model HIV-1 transmission and early disease in primates.


Assuntos
Antígenos CD4/imunologia , Infecções por HIV/imunologia , HIV-1/genética , Animais , Aotidae , Antígenos CD4/genética , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Soropositividade para HIV/genética , Soropositividade para HIV/imunologia , HIV-1/imunologia , Humanos , Macaca mulatta , Primatas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
15.
Adipocyte ; 8(1): 154-163, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31035848

RESUMO

CD36 is a multifunctional scavenger receptor and lipid transporter implicated in metabolic and inflammatory pathologies, as well as cancer progression. CD36 is known to be expressed by adipocytes and monocytes/macrophages, but its expression by T cells is not clearly established. We found that CD4 and CD8 T cells in adipose tissue and liver of humans, monkeys, and mice upregulated CD36 expression (ranging from ~5-40% CD36+), whereas little to no CD36 was expressed by T cells in blood, spleen, and lymph nodes. CD36 was expressed predominantly by resting CD38-, HLA.DR-, and PD-1- adipose tissue T cells in monkeys, and increased during high-fat feeding in mice. Adipose tissue and liver promote a distinct phenotype in resident T cells characterized by CD36 upregulation.


Assuntos
Tecido Adiposo/metabolismo , Antígenos CD36/genética , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fígado/metabolismo , Tecido Adiposo/citologia , Animais , Antígenos CD36/metabolismo , Humanos , Fígado/citologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
16.
Proc Natl Acad Sci U S A ; 116(23): 11460-11469, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31113887

RESUMO

Pandemic HIV-1 (group M) emerged following the cross-species transmission of a simian immunodeficiency virus from chimpanzees (SIVcpz) to humans. Primate lentiviruses (HIV/SIV) require the T cell receptor CD4 to enter into target cells. By surveying the sequence and function of CD4 in 50 chimpanzee individuals, we find that all chimpanzee CD4 alleles encode a fixed, chimpanzee-specific substitution (34T) that creates a glycosylation site on the virus binding surface of the CD4 receptor. Additionally, a single nucleotide polymorphism (SNP) has arisen in chimpanzee CD4 (68T) that creates a second glycosylation site on the same virus-binding interface. This substitution is not yet fixed, but instead alleles containing this SNP are still circulating within chimpanzee populations. Thus, all allelic versions of chimpanzee CD4 are singly glycosylated at the virus binding surface, and some allelic versions are doubly glycosylated. Doubly glycosylated forms of chimpanzee CD4 reduce HIV-1 and SIVcpz infection by as much as two orders of magnitude. Full restoration of virus infection in cells bearing chimpanzee CD4 requires reversion of both threonines at sites 34 and 68, destroying both of the glycosylation sites, suggesting that the effects of the glycans are additive. Differentially glycosylated CD4 receptors were biochemically purified and used in neutralization assays and microscale thermophoresis to show that the glycans on chimpanzee CD4 reduce binding affinity with the lentiviral surface glycoprotein, Env. These glycans create a shield that protects CD4 from being engaged by viruses, demonstrating a powerful form of host resistance against deadly primate lentiviruses.


Assuntos
Antígenos CD4/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Pan troglodytes/imunologia , Pan troglodytes/virologia , Polissacarídeos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Linhagem Celular , Glicosilação , Células HEK293 , Infecções por HIV/virologia , Humanos , Polimorfismo de Nucleotídeo Único/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
17.
Comp Med ; 69(2): 144-150, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30732675

RESUMO

The mammary gland contains adult stem cells that are capable of self-renewal. Although these cells hold an important role in the biology and pathology of the breast, the studies of mammary stem cells are few due to the difficulty of acquiring and expanding undifferentiated adult stem cell populations. In this study, we developed mammosphere cultures from frozen mammary cells of nulliparous cynomolgus macaques (Macaca fascicularis) as a culture system to enrich mammary stem cells. Small samples of mammary tissues were collected by surgical biopsy; cells were cultured in epithelial cell growth medium and cryopreserved. Cryopreserved cells were cultured into mammospheres, and the expression of markers for stemness was evaluated by using quantitative PCR analysis. Cells were further differentiated by using 2D and 3D approaches to evaluate morphology and organoid budding, respectively. The study showed that mammosphere culture resulted in an increase in the expression of mammary stem cell markers with each passage. In contrast, markers for epithelial cells and pluripotency decreased across multiple passages. The 2D differentiation of the cells showed heterogeneous morphology, whereas 3D differentiation allowed for organoid formation. The results indicate that mammospheres can be successfully developed from frozen mammary cells derived from breast tissue collected from nulliparous cynomolgus macaques through surgical biopsy. Because mammosphere cultures allow for the enrichment of a mammary stem cell population, this refined method provides a model for the in vitro or ex vivo study of mammary stem cells.


Assuntos
Proliferação de Células/fisiologia , Glândulas Mamárias Animais/patologia , Animais , Neoplasias da Mama/patologia , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Humanos , Macaca fascicularis , Células-Tronco Neoplásicas/patologia
18.
Antiviral Res ; 154: 140-148, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29630975

RESUMO

Adequate distribution of antiretroviral drugs to infected cells in HIV patients is critical for viral suppression. In humans and primates, HIV- and SIV-infected CD4 T cells in adipose tissues have recently been identified as reservoirs for infectious virus. To better characterize adipose tissue as a pharmacological sanctuary for HIV-infected cells, in vitro experiments were conducted to assess antiretroviral drug efficacy in the presence of adipocytes, and drug penetration in adipose tissue cells (stromal-vascular-fraction cells and mature adipocytes) was examined in treated humans and monkeys. Co-culture experiments between HIV-1-infected CD4 T cells and primary human adipocytes showed that adipocytes consistently reduced the antiviral efficacy of the nucleotide reverse transcriptase inhibitor tenofovir and its prodrug forms tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF). In HIV-infected persons, LC-MS/MS analysis of intracellular lysates derived from adipose tissue stromal-vascular-fraction cells or mature adipocytes suggested that integrase inhibitors penetrate adipose tissue, whereas penetration of nucleoside/nucleotide reverse transcriptase inhibitors such as TDF, emtricitabine, abacavir, and lamivudine is restricted. The limited distribution and functions of key antiretroviral drugs within fat depots may contribute to viral persistence in adipose tissue.


Assuntos
Adipócitos/citologia , Fármacos Anti-HIV/uso terapêutico , Linfócitos T CD4-Positivos/virologia , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Reservatórios de Doenças/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos , Pró-Fármacos/uso terapêutico , Tenofovir/uso terapêutico , Replicação Viral/efeitos dos fármacos
19.
Ecohealth ; 15(2): 426-436, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29497880

RESUMO

Natural infection of captive nonhuman primates (NHPs) with Trypanosoma cruzi (agent of Chagas disease) is an increasingly recognized problem in facilities across the southern USA, with negative consequences for NHP health and biomedical research. We explored a central Texas NHP facility as a nidus of transmission by characterizing parasite discrete typing units (DTU) in seropositive rhesus macaques (Macaca mulatta), identifying the wildlife reservoirs, and characterizing vector infection. In seropositive NHPs, we documented low and intermittent concentrations of circulating T. cruzi DNA, with two DTUs in equal proportions, TcI and TcIV. In contrast, consistently high concentrations of T. cruzi DNA were found in wild mesomammals at the facility, yet rodents were PCR-negative. Strong wildlife host associations were found in which raccoons (Procyon lotor) harbored TcIV and opossums (Didelphis virginiana) harbored TcI, while skunks (Mephitis mephitis) were infected with both DTUs. Active and passive vector surveillance yielded three species of triatomines from the facility and in proximity to the NHP enclosures, with 17% T. cruzi infection prevalence. Interventions to protect NHP and human health must focus on interrupting spillover from the robust sylvatic transmission in the surrounding environment.


Assuntos
Doenças dos Animais/parasitologia , Animais Selvagens/parasitologia , Insetos Vetores/parasitologia , Macaca mulatta/parasitologia , Triatominae/parasitologia , Trypanosoma cruzi/parasitologia , Doenças dos Animais/transmissão , Animais , DNA de Protozoário , Feminino , Masculino , Mephitidae/parasitologia , Doenças dos Macacos/parasitologia , Gambás/parasitologia , Reação em Cadeia da Polimerase , Guaxinins/parasitologia , Roedores/parasitologia
20.
Am J Trop Med Hyg ; 98(1): 173-177, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29182145

RESUMO

The establishment of a sylvatic reservoir of Zika virus (ZIKV) in the Americas is dependent on the susceptibility of primates of sufficient population density, the duration and magnitude of viremia, and their exposure to the human mosquito-borne transmission cycle. To assess the susceptibility of squirrel (Saimiri sp.) and owl monkeys (Aotus sp.) to infection, we inoculated four animals of each species with ZIKV from the current epidemic. Viremia in the absence of detectible disease was observed in both species and seroconversion occurred by day 28. ZIKV was detected in the spleen of three owl monkeys: one at 7 days postinoculation (dpi) and two at 14 dpi. This study confirms the susceptibility to ZIKV infection of two Neotropical primate species that live in close proximity to humans in South America, suggesting that they could support a widespread sylvatic ZIKV cycle there. Collectively, establishment of a ZIKV sylvatic transmission cycle in South America would imperil eradication efforts and could provide a mechanism for continued exposure of humans to ZIKV infection and disease.


Assuntos
Aotidae/virologia , Doenças dos Primatas/virologia , Saimiri/virologia , Infecção por Zika virus/veterinária , Zika virus , Animais , Suscetibilidade a Doenças/veterinária , Suscetibilidade a Doenças/virologia , Feminino , Masculino , Carga Viral/veterinária , Viremia/veterinária , Viremia/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA