Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Fish Biol ; 96(3): 768-781, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32017083

RESUMO

The role of lamprey epithelium tight junctions (TJs) in the regulation of salt and water balance is poorly understood. This study reported on claudin (Cldn) TJ protein transcripts of pre-metamorphic larval and post-metamorphic juvenile sea lamprey (Petromyzon marinus) and the transcriptional response of genes encoding Cldns to changed environmental ion levels. Transcripts encoding Cldn-3b, -4, -5, -10, -14, -18 and -19 were identified, and mRNA expression profiles revealed the organ-specific presence of cldn-5 and -14, broad expression of cldn-3b, -4, -10, -18 and -19 and spatial differences in the mRNA abundance of cldn-4, -3b and -14 along the ammocoete intestine. Expression profiles were qualitatively similar in ammocoetes and juvenile fishes. Transcript abundance of genes encoding Cldns in osmoregulatory organs (gill, kidney, intestine and skin) was subsequently investigated after exposure of ammocoetes to ion-poor water (IPW) and juveniles to hyperosmotic conditions [60% sea water (SW)]. IPW-acclimated ammocoetes increased mRNA abundance of nearly all cldns in the gill. Simultaneously, cldn-10 abundance increased in the skin, whereas cldn-4, -14 and -18 decreased in the kidney. Ammocoete cldn mRNA abundance in the intestine was altered in a region-specific manner. In contrast, cldn transcript abundance was mostly downregulated in osmoregulatory organs of juvenile fish acclimated to SW - cldn-3b, -10 and -19 in the gill; cldn-3b, -4, -10 and -19 in the skin; cldn-3b in the kidney; and cldn-3b and -14 in the intestine. Data support the idea that Cldn TJ proteins play an important role in the osmoregulatory physiology of pre- and post-metamorphic sea lamprey and that Cldn participation can occur across organs, in an organ-specific manner, as well as differ spatially within organs, which contributes to the regulation of salt and water balance in these fishes.


Assuntos
Claudinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Íons/farmacologia , Petromyzon/genética , Água/química , Aclimatação/genética , Animais , Epitélio/efeitos dos fármacos , Brânquias/efeitos dos fármacos , Osmorregulação/genética , RNA Mensageiro/genética , Água do Mar , Equilíbrio Hidroeletrolítico/genética
2.
J Exp Biol ; 220(Pt 20): 3657-3670, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28798081

RESUMO

This study reports on tight junction-associated MARVEL proteins of larval sea lamprey (Petromyzon marinus) and their potential role in ammocoete osmoregulation. Two occludin isoforms (designated Ocln and Ocln-a) and a tricellulin (Tric) were identified. Transcripts encoding ocln, ocln-a and tric were broadly expressed in larval lamprey, with the greatest abundance of ocln in the gut, liver and kidney, ocln-a in the gill and skin, and tric in the kidney. Ocln and Ocln-a resolved as ∼63 kDa and ∼35 kDa MW proteins, respectively, while Tric resolved as a ∼50 kDa protein. Ocln immunolocalized to the gill vasculature and in gill mucous cells while Ocln-a localized to the gill pouch and gill epithelium. Both Ocln and Ocln-a localized in the nephron, the epidermis and the luminal side of the gut. In branchial tissue, Tric exhibited punctate localization, consistent with its presence at regions of tricellular contact. Following ion-poor water (IPW) acclimation of ammocoetes, serum [Na+] and [Cl-] decreased, but not [Ca2+], and carcass moisture content increased. In association, Ocln abundance increased in the skin and kidney, but reduced in the gill of IPW-acclimated ammocoetes while Ocln-a abundance reduced in the kidney only. Tric abundance increased in the gill. Region-specific alterations in ocln, ocln-a and tric mRNA abundance were also observed in the gut. Data support a role for Ocln, Ocln-a and Tric in the osmoregulatory strategies of a basal vertebrate.


Assuntos
Aclimatação , Proteínas de Peixes/genética , Osmorregulação , Petromyzon/fisiologia , Proteínas de Junções Íntimas/genética , Animais , Proteínas de Peixes/metabolismo , Petromyzon/genética , Proteínas de Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA