Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Micromachines (Basel) ; 13(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295920

RESUMO

Immune surveillance is dependent on lymphocyte migration and targeted recruitment. This can involve different modes of cell motility ranging from random walk to highly directional environment-guided migration driven by chemotaxis. This study protocol describes a flow-based microfluidic device to perform quantitative multiplex cell migration assays with the potential to investigate in real time the migratory response of T cells at the population or single-cell level. The device also allows for subsequent in situ fixation and direct fluorescence analysis of the cells in the microchannel.

2.
Front Immunol ; 12: 729681, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867950

RESUMO

Objectives: Patients with Rheumatoid Arthritis (RA) are increasingly achieving stable disease remission, yet the mechanisms that govern ongoing clinical disease and subsequent risk of future flare are not well understood. We sought to identify serum proteomic alterations that dictate clinically important features of stable RA, and couple broad-based proteomics with machine learning to predict future flare. Methods: We studied baseline serum samples from a cohort of stable RA patients (RETRO, n = 130) in clinical remission (DAS28<2.6) and quantified 1307 serum proteins using the SOMAscan platform. Unsupervised hierarchical clustering and supervised classification were applied to identify proteomic-driven clusters and model biomarkers that were associated with future disease flare after 12 months of follow-up and RA medication withdrawal. Network analysis was used to define pathways that were enriched in proteomic datasets. Results: We defined 4 proteomic clusters, with one cluster (Cluster 4) displaying a lower mean DAS28 score (p = 0.03), with DAS28 associating with humoral immune responses and complement activation. Clustering did not clearly predict future risk of flare, however an XGboost machine learning algorithm classified patients who relapsed with an AUC (area under the receiver operating characteristic curve) of 0.80 using only baseline serum proteomics. Conclusions: The serum proteome provides a rich dataset to understand stable RA and its clinical heterogeneity. Combining proteomics and machine learning may enable prediction of future RA disease flare in patients with RA who aim to withdrawal therapy.


Assuntos
Artrite Reumatoide/sangue , Artrite Reumatoide/classificação , Proteínas Sanguíneas/análise , Adulto , Idoso , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Recidiva , Indução de Remissão
3.
Clin Biochem ; 88: 49-55, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33307060

RESUMO

OBJECTIVES: All patients who undergo cardiopulmonary bypass (CPB) experience some degree of ischemia reperfusion injury (IRI). Severe IRI-induced acute kidney injury (AKI) occurs in approximately 1-2% of patients undergoing CPB. Previous studies using activity-based protein profiling of urine identified group XV phospholipase A2, PLA2G15/LPLA2, as potentially associated with patients who develop AKI post CPB. The present study examined urinary PLA2G15/LPLA2 activity during CPB and in the near postoperative period for associations with subsequent AKI development. DESIGN & METHODS: Samples were collected in a nested case controlled cohort of 21 patients per group who either did (AKI) or did not (non-AKI) develop AKI post-operatively. Serum and urine samples from each patient before, during and after CPB were assayed for PLA2G15/LPLA2 activity. RESULTS: Urine activity significantly increased during the intra operative period. In contrast the activities in paired sera were markedly decreased during CPB. There was no correlation between the serum and urine activity levels of patients. There were no significant differences in activity levels of PLA2G15/LPLA2 in the urine or sera from patients that did and did not develop AKI. CONCLUSIONS: The lack of correlation between serum and urine activity levels suggests that the rapid intraoperative increases in PLA2G15/LPLA2 activity may originate from the kidney and as such offer an intraoperative indicator of early renal response to CPB associated stressors.


Assuntos
Injúria Renal Aguda/enzimologia , Aciltransferases/sangue , Aciltransferases/urina , Ponte Cardiopulmonar , Fosfolipases A2/sangue , Fosfolipases A2/urina , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Idoso , Biomarcadores/sangue , Biomarcadores/urina , Ponte Cardiopulmonar/efeitos adversos , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Período Intraoperatório , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/enzimologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/patologia , Período Pós-Operatório , Fatores de Risco
4.
Clin Proteomics ; 17: 23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549867

RESUMO

BACKGROUND: The pathophysiology of subclinical versus clinical rejection remains incompletely understood given their equivalent histological severity but discordant graft function. The goal was to evaluate serine hydrolase enzyme activities to explore if there were any underlying differences in activities during subclinical versus clinical rejection. METHODS: Serine hydrolase activity-based protein profiling (ABPP) was performed on the urines of a case control cohort of patients with biopsy confirmed subclinical or clinical transplant rejection. In-gel analysis and affinity purification with mass spectrometry were used to demonstrate and identify active serine hydrolase activity. An assay for proteinase 3 (PR3/PRTN3) was adapted for the quantitation of activity in urine. RESULTS: In-gel ABPP profiles suggested increased intensity and diversity of serine hydrolase activities in urine from patients undergoing subclinical versus clinical rejection. Serine hydrolases (n = 30) were identified by mass spectrometry in subclinical and clinical rejection patients with 4 non-overlapping candidates between the two groups (i.e. ABHD14B, LTF, PR3/PRTN3 and PRSS12). Western blot and the use of a specific inhibitor confirmed the presence of active PR3/PRTN3 in samples from patients undergoing subclinical rejection. Analysis of samples from normal donors or from several serial post-transplant urines indicated that although PR3/PRTN3 activity may be highly associated with low-grade subclinical inflammation, the enzyme activity was not restricted to this patient group. CONCLUSIONS: There appear to be limited qualitative and quantitative differences in serine hydrolase activity in patients with subclinical versus clinical renal transplant rejection. The majority of enzymes identified were present in samples from both groups implying that in-gel quantitative differences may largely relate to the activity status of shared enzymes. However qualitative compositional differences were also observed indicating differential activities. The PR3/PRTN3 analyses indicate that the activity status of urine in transplant patients is dynamic possibly reflecting changes in the underlying processes in the transplant. These data suggest that differential serine hydrolase pathways may be active in subclinical versus clinical rejection which requires further exploration in larger patient cohorts. Although this study focused on PR3/PRTN3, this does not preclude the possibility that other enzymes may play critical roles in the rejection process.

5.
PLoS Negl Trop Dis ; 14(6): e0008335, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511241

RESUMO

Zika virus (ZIKV), a neglected tropical disease until its re-emergence in 2007, causes microcephaly in infants and Guillain-Barré syndrome in adults. Its re-emergence and spread to more than 80 countries led the World Health Organization in 2016 to declare a Public Health Emergency. ZIKV is mainly transmitted by mosquitos, but can persist in infected human male semen for prolonged periods and may be sexually transmitted. Testicular Sertoli cells support ZIKV replication and may be a reservoir for persistent ZIKV infection. Electrical impedance analyses indicated ZIKV infection rapidly disrupted Vero cell monolayers but had little effect upon human Sertoli cells (HSerC). We determined ZIKV-induced proteomic changes in HSerC using an aptamer-based multiplexed technique (SOMAscan) targeting >1300 human proteins. ZIKV infection caused differential expression of 299 proteins during three different time points, including 5 days after infection. Dysregulated proteins are involved in different bio-functions, including cell death and survival, cell cycle, maintenance of cellular function, cell signaling, cellular assembly, morphology, movement, molecular transport, and immune response. Many signaling pathways important for maintenance of HSerC function and spermatogenesis were highly dysregulated. These included IL-6, IGF1, EGF, NF-κB, PPAR, ERK/MAPK, and growth hormone signaling. Down-regulation of the PPAR signaling pathway might impact cellular energy supplies. Upstream molecule analysis also indicated microRNAs involved in germ cell development were downregulated by infection. Overall, this study leads to a better understanding of Sertoli cellular mechanisms used by ZIKV during persistent infection and possible ZIKV impacts on spermatogenesis.


Assuntos
Células de Sertoli/imunologia , Espermatogênese , Junções Íntimas/imunologia , Infecção por Zika virus/imunologia , Animais , Chlorocebus aethiops , Humanos , Masculino , Proteômica , Sêmen/virologia , Células de Sertoli/virologia , Transdução de Sinais , Junções Íntimas/virologia , Células Vero , Replicação Viral , Zika virus
6.
Transplantation ; 103(9): 1790-1798, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30985576

RESUMO

Enzyme activity may be more pathophysiologically relevant than enzyme quantity and is regulated by changes in conformational status that are undetectable by traditional proteomic approaches. Further, enzyme activity may provide insights into rapid physiological responses to inflammation/injury that are not dependent on de novo protein transcription. Activity-based protein profiling (ABPP) is a chemical proteomic approach designed to characterize and identify active enzymes within complex biological samples. Activity probes have been developed to interrogate multiple enzyme families with broad applicability, including but not limited to serine hydrolases, cysteine proteases, matrix metalloproteases, nitrilases, caspases, and histone deacetylases. The goal of this overview is to describe the overall rationale, approach, methods, challenges, and potential applications of ABPP to transplantation research. To do so, we present a case example of urine serine hydrolase ABPP in kidney transplant rejection to illustrate the utility and workflow of this analytical approach. Ultimately, developing novel transplant therapeutics is critically dependent on understanding the pathophysiological processes that result in loss of transplant function. ABPP offers a new dimension for characterizing dynamic changes in clinical samples. The capacity to identify and measure relevant enzyme activities provides fresh opportunities for understanding these processes and may help identify markers of disease activity for the development of novel diagnostics and real-time monitoring of patients. Finally, these insights into enzyme activity may also help to identify new transplant therapeutics, such as enzyme-specific inhibitors.


Assuntos
Ensaios Enzimáticos Clínicos , Rejeição de Enxerto/diagnóstico , Transplante de Rim/efeitos adversos , Análise Serial de Proteínas , Proteômica , Serina Endopeptidases/urina , Animais , Biomarcadores/urina , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/urina , Humanos , Valor Preditivo dos Testes , Resultado do Tratamento , Urinálise , Fluxo de Trabalho
7.
J Proteome Res ; 17(10): 3547-3556, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30192561

RESUMO

The processes involved in the initiation of acute kidney injury (AKI) following cardiopulmonary bypass (CPB) are thought to occur during the intraoperative period. Such a rapid development might indicate that some of the inductive events are not dependent on de novo protein synthesis, raising the possibility that changes in activities of pre-existing enzymes could contribute to the development of AKI. Activity-based protein profiling (ABPP) was used to compare the serine hydrolase enzyme activities present in the urines of CPB patients who subsequently developed AKI versus those who did not (non-AKI) during the intra- and immediate postoperative periods. Sequential urines collected from a nested case-control cohort of AKI and non-AKI patients were reacted with a serine hydrolase activity probe, fluorophosphonate-TAMRA, and separated by SDS-PAGE. The patterns and levels of probe-labeled proteins in the two groups were initially comparable. However, within 1 h of CPB there were significant pattern changes in the AKI group. Affinity purification and mass spectrometry-based analysis of probe-labeled enzymes in AKI urines at 1 h CPB and arrival to the intensive care unit (ICU) identified 28 enzymes. Quantitative analysis of the activity of one of the identified enzymes, kallikrein-1, revealed some trends suggesting differences in the levels and temporal patterns of enzyme activity between a subset of patients who developed AKI and those who did not. A comparative analysis of affinity-purified probe reacted urinary proteins from these patient groups during the intraoperative period suggested the presence of both shared and unique enzyme patterns. These results indicate that there are intraoperative changes in the levels and types of serine hydrolase activities in patients who subsequently develop AKI. However, the role of these activity differences in the development of AKI remains to be determined.


Assuntos
Injúria Renal Aguda/metabolismo , Ponte Cardiopulmonar/métodos , Hidrolases/metabolismo , Proteômica/métodos , Serina/metabolismo , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/urina , Idoso , Ponte Cardiopulmonar/efeitos adversos , Estudos de Casos e Controles , Feminino , Humanos , Hidrolases/urina , Período Intraoperatório , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Calicreínas Teciduais/metabolismo
8.
Clin Proteomics ; 14: 26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694743

RESUMO

BACKGROUND: Mesenchymal stem/stromal cells (MSC) display a range of immunoregulatory properties which can be enhanced by the exposure to cytokines such interferon γ (IFN-γ). However the compositional changes associated with the 'licensing' of these cells have not been clearly defined. The present study was undertaken to provide a detailed comparative proteomic analysis of the compositional changes that occur in human bone marrow derived MSC following 20 h treatment with IFN-γ. METHODS: 2D LC MSMS analysis of control and IFN-γ treated cells from 5 different healthy donors provided confident identification of more than 8400 proteins. RESULTS: In total 210 proteins were shown to be significantly altered in their expression levels (≥|2SD|) following IFN-γ treatment. The changes for several of these proteins were confirmed by flow cytometry. STRING analysis determined that approximately 30% of the altered proteins physically interacted in described interferon mediated processes. Comparison of the list of proteins that were identified as changed in the proteomic analysis with data for the same proteins in the Interferome DB indicated that ~35% of these proteins have not been reported to be IFN-γ responsive in a range of cell types. CONCLUSIONS: This data provides an in depth analysis of the proteome of basal and IFN-γ treated human mesenchymal stem cells and it identifies a number of novel proteins that may contribute to the immunoregulatory capacity if IFN-γ licensed cells.

9.
Curr Opin Nephrol Hypertens ; 26(3): 229-234, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28221173

RESUMO

PURPOSE OF REVIEW: Despite modern immunosuppression, renal allograft rejection remains a major contributor to graft loss. Novel biomarkers may help improve posttransplant outcomes through the early detection and treatment of rejection. Our objective is to provide an overview of proteomics, review recent discovery-based rejection studies, and explore innovative approaches in biomarker development. RECENT FINDINGS: Urine MMP7 was identified as a biomarker of subclinical and clinical rejection using two-dimensional liquid chromatography tandem-mass spectrometry (LC-MS/MS) and improved the overall diagnostic discrimination of urine CXCL10 : Cr alone for renal allograft inflammation. A novel peptide signature to classify stable allografts from acute rejection, chronic allograft injury, and polyoma virus (BKV) nephropathy was identified using isobaric tag for relative and absolute quantitation (TRAQ) and label-free MS, with independent validation by selected reaction monitoring mass spectrometry (SRM-MS). Finally, an in-depth exploration of peripheral blood mononuclear cells identified differential proteoform expression in healthy transplants versus rejection. SUMMARY: There is still much in the human proteome that remains to be explored, and further integration of renal, urinary, and exosomal data may offer deeper insight into the pathophysiology of rejection. Functional proteomics may be more biologically relevant than protein/peptide quantity alone, such as assessment of proteoforms or activity-based protein profiling. Discovery-based studies have identified potential biomarker candidates, but external validation studies are required.


Assuntos
Rejeição de Enxerto/diagnóstico , Transplante de Rim , Metaloproteinase 7 da Matriz/urina , Nefrite/diagnóstico , Proteômica/métodos , Biomarcadores/urina , Quimiocina CXCL10/urina , Creatinina/urina , Diagnóstico Diferencial , Rejeição de Enxerto/prevenção & controle , Humanos , Leucócitos Mononucleares/metabolismo , Nefrite/urina
10.
Blood ; 129(13): 1840-1854, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28122739

RESUMO

Integrins are a large family of heterodimeric transmembrane receptors differentially expressed on almost all metazoan cells. Integrin ß subunits contain a highly conserved plexin-semaphorin-integrin (PSI) domain. The CXXC motif, the active site of the protein-disulfide-isomerase (PDI) family, is expressed twice in this domain of all integrins across species. However, the role of the PSI domain in integrins and whether it contains thiol-isomerase activity have not been explored. Here, recombinant PSI domains of murine ß3, and human ß1 and ß2 integrins were generated and their PDI-like activity was demonstrated by refolding of reduced/denatured RNase. We identified that both CXXC motifs of ß3 integrin PSI domain are required to maintain its optimal PDI-like activity. Cysteine substitutions (C13A and C26A) of the CXXC motifs also significantly decreased the PDI-like activity of full-length human recombinant ß3 subunit. We further developed mouse anti-mouse ß3 PSI domain monoclonal antibodies (mAbs) that cross-react with human and other species. These mAbs inhibited αIIbß3 PDI-like activity and its fibrinogen binding. Using single-molecular Biomembrane-Force-Probe assays, we demonstrated that inhibition of αIIbß3 endogenous PDI-like activity reduced αIIbß3-fibrinogen interaction, and these anti-PSI mAbs inhibited fibrinogen binding via different levels of both PDI-like activity-dependent and -independent mechanisms. Importantly, these mAbs inhibited murine/human platelet aggregation in vitro and ex vivo, and murine thrombus formation in vivo, without significantly affecting bleeding time or platelet count. Thus, the PSI domain is a potential regulator of integrin activation and a novel target for antithrombotic therapies. These findings may have broad implications for all integrin functions, and cell-cell and cell-matrix interactions.


Assuntos
Cadeias beta de Integrinas/imunologia , Isomerases de Dissulfetos de Proteínas/imunologia , Motivos de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Domínio Catalítico , Moléculas de Adesão Celular , Humanos , Camundongos , Proteínas do Tecido Nervoso , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Proteínas Recombinantes , Semaforinas , Trombose/prevenção & controle
11.
Clin Proteomics ; 13: 17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27528862

RESUMO

BACKGROUND: The urinary proteome of patients undergoing cardiopulmonary bypass (CPB) may provide important insights into systemic and renal changes associated with the procedure. Such information may ultimately provide a basis to differentiate changes or properties associated with the development of acute kidney injury. While mass spectrometry (MS) analysis offers the potential for in-depth compositional analysis it is often limited in coverage and relative quantitation capacity. The aim of this study was to develop a process flow for the preparation and comparison of the intraoperative urinary proteome. METHODS: Urines were collected from patients at the start of CPB and 1-h into CPB. Pooled samples (n = 5) from each time point were processed using a modified Filter Assisted Sample Preparation protocol. The resulting peptides were analyzed by 2D-LC-MS/MS and by 1D-LC-MS/MS SWATH (Sequential Window acquisition of All Theoretical fragment ion spectra). RESULTS: The 2D-LC-MS/MS analysis identified 1324 proteins in the two pools, of which 744 were quantifiable. The SWATH approach provided quantitation for 730 proteins, 552 of which overlapped with the common population from the 2D-IDA results. Intensity correlation filtering between the two methods gave 475 proteins for biological interpretation. Proteins displaying greater than threefold changes (>log2 1.59) at 1-hour CPB relative to the initiation of CPB (26 down-regulated and 22 up-regulated) were selected for further analysis. Up-regulated proteins were enriched in GO terms related to humoral immune response, predominantly innate immunity (C4b, lactotransferrin, protein S100-A8, cathelicidin, myeloperoxidase) and extracellular matrix reorganization (e.g. MMP-9). CONCLUSIONS: This study describes a scheme for processing urine from patients undergoing CPB for mass spectrometry-based analysis. The introduction of SWATH into the workflow offers a sample and instrument sparing approach to obtaining consistent in-depth sample analysis. The design of the methodology is such that it can be readily applied to large numbers of clinical samples with the potential for automation. The results also suggest that activation of the innate immune responses occur during cardiac bypass surgery.

12.
Transplantation ; 100(3): 648-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26906940

RESUMO

BACKGROUND: The urinary CXC chemokine ligand (CXCL)10 detects renal transplant inflammation noninvasively, but has limited sensitivity and specificity. In this study, we performed urinary proteomic analysis to identify novel biomarkers that may improve the diagnostic performance of urinary CXCL10 for detecting alloimmune inflammation in renal transplant patients. METHODS: In preliminary studies, adult renal transplant patients with normal histology (n = 5), interstitial fibrosis and tubular atrophy (n = 6), subclinical (n = 6) and clinical rejection (n = 6), underwent in-depth urine protein compositional analysis with LC-MS/MS, and matrix metalloproteinase-7 (MMP7) were identified as a potential candidate for the diagnosis of renal allograft inflammation. Urine MMP7 performance was then studied in a larger, prospective adult renal transplant population (n = 148 urines from n = 133 patients) with matched surveillance/indication biopsies. The diagnostic performance of urinary MMP7 and CXCL10 in combination was next evaluated using concordance (C-) statistics, net reclassification improvement and integrated discrimination improvement indices, to determine whether it was better than CXCL10 alone. RESULTS: Urinary MMP7:creatinine (Cr) was lower in normal transplants compared to those with inflammation: glomerulonephritis (P = 0.009), viral nephropathies (P = 0.002), interstitial fibrosis and tubular atrophy and inflammation (P = 0.04), borderline (P = 0.08), subclinical (P = 0.01) and clinical rejection (P = 0.0006), and acute tubular necrosis (P < 0.0001). Urinary MMP7:Cr and CXCL10:Cr significantly distinguished noninflamed from inflamed biopsies (area under the curve, 0.74 and 0.70, respectively). The addition of urinary MMP7:Cr to CXCL10:Cr improved the diagnostic performance for subclinical and clinical inflammation/injury by integrated discrimination improvement (P = 0.002) and net reclassification improvement (P = 0.006) analyses. CONCLUSIONS: Urinary MMP7:Cr improves the overall diagnostic performance of urinary CXCL10:Cr for distinguishing normal histology from subclinical and clinical inflammation/injury, but not subclinical inflammation alone.


Assuntos
Injúria Renal Aguda/diagnóstico , Ensaios Enzimáticos Clínicos/métodos , Transplante de Rim/efeitos adversos , Metaloproteinase 7 da Matriz/urina , Nefrite/diagnóstico , Injúria Renal Aguda/urina , Adulto , Aloenxertos , Biomarcadores/urina , Quimiocina CXCL10/urina , Cromatografia Líquida , Creatinina/urina , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nefrite/urina , Valor Preditivo dos Testes , Estudos Prospectivos , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Resultado do Tratamento , Regulação para Cima , Urinálise/métodos
13.
Anal Chem ; 88(5): 2847-55, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26849966

RESUMO

The growing complexity of proteomics samples and the desire for deeper analysis drive the development of both better MS instrument and advanced multidimensional separation schemes. We applied 1D, 2D, and 3D LC-MS/MS separation protocols (all of reversed-phase C18 functionality) to a tryptic digest of whole Jurkat cell lysate to estimate the depth of proteome coverage and to collect high-quality peptide retention information. We varied pH of the eluent and hydrophobicity of ion-pairing modifier to achieve good separation orthogonality (utilization of MS instrument time). All separation modes employed identical LC settings with formic-acid-based eluents in the last dimension. The 2D protocol used a high pH-low pH scheme with 21 concatenated fractions. In the 3D protocol, six concatenated fractions from the first dimension (C18, heptafluorobutyric acid) were analyzed using the identical 2D LC-MS procedure. This approach permitted a detailed evaluation of the analysis output consuming 21× and 126× the analysis time and sample load compared to 1D. Acquisition over 189 h of instrument time in 3D mode resulted in the identification of ∼14 000 proteins and ∼250 000 unique peptides. We estimated the dynamic range via peak intensity at the MS(2) level as approximately 10(4.2), 10(5.6), and 10(6.2) for the 1D, 2D, and 3D protocols, respectively. The uniform distribution of the number of acquired MS/MS, protein, and peptide identifications across all 126 fractions and through the chromatographic time scale in the last LC-MS stage indicates good separation orthogonality. The protocol is scalable and is amenable to the use of peptide retention prediction in all dimensions. All these features make it a very good candidate for large-scale bottom-up proteomic runs, which target both protein identification as well as the collection of peptide retention data sets for targeted quantitative applications.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Peptídeos/química , Proteômica
14.
J Immunol ; 196(2): 586-95, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26695371

RESUMO

Cell migration is controlled by PI3Ks, which generate lipid messengers phosphatidylinositol-3,4,5-trisphosphate and phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] and consequently recruit pleckstrin homology (PH) domain-containing signaling proteins. PI3K inhibition impairs migration of normal and transformed B cells, an effect thought to partly underlie the therapeutic efficacy of PI3K inhibitors in treatment of B cell malignancies such as chronic lymphocytic leukemia. Although a number of studies have implicated phosphatidylinositol-3,4,5-trisphosphate in cell migration, it remains unknown whether PI(3,4)P2 plays a distinct role. Using the PI(3,4)P2-specific phosphatase inositol polyphosphate 4-phosphatase, we investigate the impact of depleting PI(3,4)P2 on migration behavior of malignant B cells. We find that cells expressing wild-type, but not phosphatase dead, inositol polyphosphate 4-phosphatase show impaired SDF-induced PI(3,4)P2 responses and reduced migration in Transwell chamber assays. Moreover, PI(3,4)P2 depletion in primary chronic lymphocytic leukemia cells significantly impaired their migration capacity. PI(3,4)P2 depletion reduced both overall motility and migration directionality in the presence of a stable chemokine gradient. Within chemotaxing B cells, the PI(3,4)P2-binding cytoskeletal regulator lamellipodin (Lpd) was found to colocalize with PI(3,4)P2 on the plasma membrane via its PH domain. Overexpression and knockdown studies indicated that Lpd levels significantly impact migration capacity. Moreover, the ability of Lpd to promote directional migration of B cells in an SDF-1 gradient was dependent on its PI(3,4)P2-binding PH domain. These results demonstrate that PI(3,4)P2 plays a significant role in cell migration via binding to specific cytoskeletal regulators such as Lpd, and they suggest that impairment of PI(3,4)P2-dependent processes may contribute to the therapeutic efficacy of PI3K inhibitors in B cell malignancies.


Assuntos
Proteínas de Transporte/metabolismo , Quimiotaxia de Leucócito/fisiologia , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas de Membrana/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Western Blotting , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Espectrometria de Massas , Microscopia Confocal , Transfecção
15.
Proteomics Clin Appl ; 10(6): 663-70, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26537655

RESUMO

PURPOSE: To develop a MS-based selected reaction monitoring (SRM) assay for quantitation of myeloid-derived growth factor (MYDGF) formerly chromosome 19 open reading frame (C19orf10). EXPERIMENTAL DESIGN: Candidate reporter peptides were identified in digests of recombinant MYDGF. Isotopically labeled forms of these reporter peptides were employed as internal standards for assay development. Two reference peptides were selected SYLYFQTFFK and GAEIEYAMAYSK with respective LOQ of 42 and 380 attomole per injection. RESULTS: Application of the assay to human serum and synovial fluid determined that the assay sensitivity was reduced and quantitation was not achievable. However, the partial depletion of albumin and immunoglobulin from synovial fluids provided estimates of 300-650 femtomoles per injection (0.7-1.6 nanomolar (nM) fluid concentrations) in three of the six samples analyzed. CONCLUSIONS AND CLINICAL RELEVANCE: A validated sensitive assay for the quantitation of MYDGF in biological fluids was developed. However, the endogenous levels of MYDGF in such fluids are at or below the current levels of quantitation. The levels of MYDGF are lower than those previously reported using an ELISA. The current results suggest that additional steps may be required to remove high abundance proteins or to enrich MYDGF for SRM-based quantitation.


Assuntos
Artrite Reumatoide/diagnóstico , Bioensaio/métodos , Interleucinas/isolamento & purificação , Espectrometria de Massas/métodos , Albuminas/química , Sequência de Aminoácidos , Artrite Reumatoide/sangue , Artrite Reumatoide/patologia , Bioensaio/normas , Isótopos de Carbono , Precipitação Química , Humanos , Imunoglobulina G/química , Interleucinas/sangue , Marcação por Isótopo/métodos , Limite de Detecção , Espectrometria de Massas/normas , Isótopos de Nitrogênio , Peptídeos/análise , Peptídeos/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Líquido Sinovial/química
16.
Sci Transl Med ; 7(310): 310ra167, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26491077

RESUMO

There is currently no clinically effective vaccine against leishmaniasis because of poor understanding of the antigens that elicit dominant T cell immunity. Using proteomics and cellular immunology, we identified a dominant naturally processed peptide (PEPCK335-351) derived from Leishmania glycosomal phosphoenolpyruvate carboxykinase (PEPCK). PEPCK was conserved in all pathogenic Leishmania, expressed in glycosomes of promastigotes and amastigotes, and elicited strong CD4(+) T cell responses in infected mice and humans. I-A(b)-PEPCK335-351 tetramer identified protective Leishmania-specific CD4(+) T cells at a clonal level, which comprised ~20% of all Leishmania-reactive CD4(+) T cells at the peak of infection. PEPCK335-351-specific CD4(+) T cells were oligoclonal in their T cell receptor usage, produced polyfunctional cytokines (interleukin-2, interferon-γ, and tumor necrosis factor), and underwent expansion, effector activities, contraction, and stable maintenance after lesion resolution. Vaccination with PEPCK peptide, DNA expressing full-length PEPCK, or rPEPCK induced strong durable cross-species protection in both resistant and susceptible mice. The effectiveness and durability of protection in vaccinated mice support the development of a broadly cross-species protective vaccine against different forms of leishmaniasis by targeting PEPCK.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Leishmania/imunologia , Animais , Leishmania/classificação , Leishmania/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Receptores de Antígenos de Linfócitos T/genética
17.
Appl Microbiol Biotechnol ; 99(13): 5583-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26002633

RESUMO

Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.


Assuntos
Biocombustíveis , Poluentes Ambientais/metabolismo , Glicerol/metabolismo , Metais Pesados/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/crescimento & desenvolvimento , Pseudomonas putida/genética , Amônia/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Proteoma/análise , Pseudomonas putida/metabolismo
18.
Breast Cancer Res ; 17: 46, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25887862

RESUMO

INTRODUCTION: Podocalyxin (gene name PODXL) is a CD34-related sialomucin implicated in the regulation of cell adhesion, migration and polarity. Upregulated expression of podocalyxin is linked to poor patient survival in epithelial cancers. However, it is not known if podocalyxin has a functional role in tumor progression. METHODS: We silenced podocalyxin expression in the aggressive basal-like human (MDA-MB-231) and mouse (4T1) breast cancer cell lines and also overexpressed podocalyxin in the more benign human breast cancer cell line, MCF7. We evaluated how podocalyxin affects tumorsphere formation in vitro and compared the ability of podocalyxin-deficient and podocalyxin-replete cell lines to form tumors and metastasize using xenogenic or syngeneic transplant models in mice. Finally, in an effort to develop therapeutic treatments for systemic cancers, we generated a series of antihuman podocalyxin antibodies and screened these for their ability to inhibit tumor progression in xenografted mice. RESULTS: Although deletion of podocalyxin does not alter gross cell morphology and growth under standard (adherent) culture conditions, expression of PODXL is required for efficient formation of tumorspheres in vitro. Correspondingly, silencing podocalyxin resulted in attenuated primary tumor growth and invasiveness in mice and severely impaired the formation of distant metastases. Likewise, in competitive tumor engraftment assays where we injected a 50:50 mixture of control and shPODXL (short-hairpin RNA targeting PODXL)-expressing cells, we found that podocalyxin-deficient cells exhibited a striking decrease in the ability to form clonal tumors in the lung, liver and bone marrow. Finally, to validate podocalyxin as a viable target for immunotherapy, we screened a series of novel antihuman podocalyxin antibodies for their ability to inhibit tumor progression in vivo. One of these antibodies, PODOC1, potently blocked tumor growth and metastasis. CONCLUSIONS: We show that podocalyxin plays a key role in the formation of primary tumors and distant tumor metastasis. In addition, we validate podocalyxin as potential target for monoclonal antibody therapy to inhibit primary tumor growth and systemic dissemination.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sialoglicoproteínas/antagonistas & inibidores , Sialoglicoproteínas/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Mamárias Animais , Camundongos , Metástase Neoplásica , Interferência de RNA , RNA Interferente Pequeno/genética , Sialoglicoproteínas/genética , Esferoides Celulares , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Proteome Sci ; 13: 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25762866

RESUMO

BACKGROUND: Knowledge of the mouse salivary proteome is not well documented and as a result, very limited. Currently, several salivary proteins remain unidentified and for some others, their function yet to be determined. The goal of the present study is to utilize mass spectrometry analysis to widen our knowledge of mouse salivary proteins, and through extensive database searches, provide further insight into the array of proteins that can be found in saliva. A comprehensive mouse salivary proteome will also facilitate the development of mouse models to study specific biomarkers of many human diseases. RESULTS: Individual saliva samples were collected from male and female mice, and later pooled according to sex. Two pools of saliva from female mice (2 samples/pool) and 2 pools of saliva from male mice were used for analysis utilizing high performance liquid chromatograph mass spectrometry (nano-RPLC-MS/MS). The resulting datasets identified 345 proteins: 174 proteins were represented in saliva obtained from both sexes, as well as 82 others that were more female specific and 89 that were more male specific. Of these sex linked proteins, twelve were identified as exclusively sex-limited; 10 unique to males and 2 unique to females. Functional analysis of the 345 proteins identified 128 proteins with catalytic activity characteristics; indicative of proteins involved in digestion, and 35 proteins associated with stress response, host defense, and wound healing functions. Submission of the list of 345 proteins to the BioMart data mining tool in the Ensembl database further allowed us to identify a total of 283 orthologous human genes, of which, 131 proteins were recently reported to be present in the human salivary proteome. CONCLUSIONS: The present study is the most comprehensive list to date of the proteins that constitute the mouse salivary proteome. The data presented can serve as a useful resource for identifying potentially useful biomarkers of human health and disease.

20.
Proteomics ; 15(1): 16-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348682

RESUMO

Label free quantitation by measurement of peptide fragment signal intensity (MS2 quantitation) is a technique that has seen limited use due to the stochastic nature of data dependent acquisition (DDA). However, data independent acquisition has the potential to make large scale MS2 quantitation a more viable technique. In this study we used an implementation of data independent acquisition--SWATH--to perform label free protein quantitation in a model bacterium Clostridium stercorarium. Four tryptic digests analyzed by SWATH were probed by an ion library containing information on peptide mass and retention time obtained from DDA experiments. Application of this ion library to SWATH data quantified 1030 proteins with at least two peptides quantified (∼ 40% of predicted proteins in the C. stercorarium genome) in each replicate. Quantitative results obtained were very consistent between biological replicates (R(2) ∼ 0.960). Protein quantitation by summation of peptide fragment signal intensities was also highly consistent between biological replicates (R(2) ∼ 0.930), indicating that this approach may have increased viability compared to recent applications in label free protein quantitation. SWATH based quantitation was able to consistently detect differences in relative protein quantity and it provided coverage for a number of proteins that were missed in some samples by DDA analysis.


Assuntos
Proteínas de Bactérias/análise , Clostridium/química , Fragmentos de Peptídeos/análise , Proteômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA