Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264865

RESUMO

Spinal cord epidural stimulation (scES) is a therapeutic option that promotes functional improvements in sensory, motor, and autonomic functions following spinal cord injury (SCI). Previous scES mapping studies targeting the lower urinary tract (LUT) in rats demonstrated functional response variability based upon lumbosacral level, parameters used, extent of injury (spinally intact versus chronic anatomically complete spinal transections), and sex. In the current study, female rats with clinically relevant graded incomplete T9 contusion injuries were mapped with scES at 60 days-post-injury at three spinal levels (T13, L3, L6) with a novel miniature 15-electrode array designed to deliver optimal specificity. The results obtained during bladder fill and void cycles conducted under urethane anesthesia indicate frequency dependent sub-motor threshold effects on LUT function with a single row of electrodes positioned across the full medio-lateral extent of the dorsal cord. The findings of improved storage and emptying, represented by significantly longer inter-contractile intervals with T13 scES and L3 scES and by a significantly increased estimated void efficiency with L6 scES, respectively, is consistent with previous studies using intact and chronic complete transected male and female rats. The data support the efficacy of selective spinal network stimulation to drive functionally relevant networks for storage versus emptying phases of the urinary cycle. The current findings further demonstrate the translational promise of scES for SCI individuals with LUT dysfunctions, regardless of injury severity.

2.
Sci Rep ; 13(1): 12258, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507456

RESUMO

Recent pre-clinical and clinical spinal cord epidural stimulation (scES) experiments specifically targeting the thoracolumbar and lumbosacral circuitries mediating lower urinary tract (LUT) function have shown improvements in storage, detrusor pressure, and emptying. With the existence of a lumbar spinal coordinating center in rats that is involved with external urethral sphincter (EUS) functionality during micturition, the mid-lumbar spinal cord (specifically L3) was targeted in the current study with scES to determine if the EUS and thus the void pattern could be modulated, using both intact and chronic complete spinal cord injured female rats under urethane anesthesia. L3 scES at select frequencies and intensities of stimulation produced a reduction in void volumes and EUS burst duration in intact rats. After chronic transection, three different subgroups of LUT dysfunction were identified and the response to L3 scES promoted different cystometry outcomes, including changes in EUS bursting. The current findings suggest that scES at the L3 level can generate functional neuromodulation of both the urinary bladder and the EUS in intact and SCI rats to enhance voiding in a variety of clinical scenarios.


Assuntos
Traumatismos da Medula Espinal , Bexiga Urinária , Ratos , Feminino , Animais , Uretra , Uretana/farmacologia , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/terapia , Eletromiografia , Micção/fisiologia , Carbamatos/farmacologia , Carcinógenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA