Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(22): e2400258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526197

RESUMO

Due to their amorphous-like ultralow lattice thermal conductivity both below and above the superionic phase transition, crystalline Cu- and Ag-based superionic argyrodites have garnered widespread attention as promising thermoelectric materials. However, despite their intriguing properties, quantifying their lattice thermal conductivities and a comprehensive understanding of the microscopic dynamics that drive these extraordinary properties are still lacking. Here, an integrated experimental and theoretical approach is adopted to reveal the presence of Cu-dominated low-energy optical phonons in the Cu-based argyrodite Cu7PS6. These phonons yield strong acoustic-optical phonon scattering through avoided crossing, enabling ultralow lattice thermal conductivity. The Unified Theory of thermal transport is employed to analyze heat conduction and successfully reproduce the experimental amorphous-like ultralow lattice thermal conductivities, ranging from 0.43 to 0.58 W m-1 K-1, in the temperature range of 100-400 K. The study reveals that the amorphous-like ultralow thermal conductivity of Cu7PS6 stems from a significantly dominant wave-like conduction mechanism. Moreover, the simulations elucidate the wave-like thermal transport mainly results from the contribution of Cu-associated low-energy overlapping optical phonons. This study highlights the crucial role of low-energy and overlapping optical modes in facilitating amorphous-like ultralow thermal transport, providing a thorough understanding of the underlying complex dynamics of argyrodites.

2.
Small ; 19(49): e2305048, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594732

RESUMO

The structural coexistence of dual rigid and mobile sublattices in superionic Argyrodites yields ultralow lattice thermal conductivity along with decent electrical and ionic conductivities and therefore attracts intense interest for batteries, fuel cells, and thermoelectric applications. However, a comprehensive understanding of their underlying lattice and diffusive dynamics in terms of the interplay between phonons and mobile ions is missing. Herein, inelastic neutron scattering is employed to unravel that phonon softening on heating to Tc ≈ 350 K triggers fast Ag diffusion in the canonical superionic Argyrodite Ag8 GeSe6 . Ab initio molecular dynamics simulations reproduce the experimental neutron scattering signals and identify the partially ultrafast Ag diffusion with a large diffusion coefficient of 10-4 cm-2 s-1 . The study illustrates the microscopic interconnection between soft phonons and mobile ions and provides a paradigm for an intertwined interaction of the lattice and diffusive dynamics in superionic materials.

3.
Nat Commun ; 13(1): 4535, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927267

RESUMO

Understanding the organizing principles of interacting electrons and the emergence of novel electronic phases is a central endeavor of condensed matter physics. Electronic nematicity, in which the discrete rotational symmetry in the electron fluid is broken while the translational one remains unaffected, is a prominent example of such a phase. It has proven ubiquitous in correlated electron systems, and is of prime importance to understand Fe-based superconductors. Here, we find that fluctuations of such broken symmetry are exceptionally strong over an extended temperature range above phase transitions in [Formula: see text], the nickel homologue to the Fe-based systems. This lends support to a type of electronic nematicity, dynamical in nature, which exhibits a particularly strong coupling to the underlying crystal lattice. Fluctuations between degenerate nematic configurations cause splitting of phonon lines, without lifting degeneracies nor breaking symmetries, akin to spin liquids in magnetic systems.

4.
Phys Rev Lett ; 124(25): 257601, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639769

RESUMO

The nature of the hidden-order (HO) state in URu_{2}Si_{2} remains one of the major unsolved issues in heavy-fermion physics. Recently, torque magnetometry, x-ray diffraction, and elastoresistivity data have suggested that the HO phase transition at T_{HO}≈ 17.5 K is driven by electronic nematic effects. Here, we search for thermodynamic signatures of this purported structural instability using anisotropic thermal expansion, Young's modulus, elastoresistivity, and specific-heat measurements. In contrast to the published results, we find no evidence of a rotational symmetry breaking in any of our data. Interestingly, our elastoresistivity measurements, which are in full agreement with published results, exhibit a Curie-Weiss divergence, which we however attribute to a volume and not to a symmetry-breaking effect. Finally, clear evidence for thermal fluctuations is observed in our heat-capacity data, from which we estimate the HO correlation length.

5.
Adv Mater ; 25(25): 3478-84, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23696267

RESUMO

The angular and temperature dependence of the field-effect mobility are investigated for p-type DNTT single crystals in a vacuum-gap structure. Temperature-independent transport behavior and weak mobility anisotropy are observed, with the best mobility approaching 10 cm(2) V(-1) s(-1) . Structural characterization and simulation suggest exceptionally high-quality and high-purity crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA