Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infancy ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676934

RESUMO

Parents use joint attention to direct infants to environmental stimuli. We hypothesized that infants whose parents provide more bids for joint attention will display a more complex neural response when viewing social scenes. Sixty-one 8-month-old infants underwent electroencephalography (EEG) while viewing videos of joint- and parallel-play and participated in a free play interaction. EEG data was analyzed using multiscale entropy, which quantifies neural variability. Free play interactions assessed parent alternating gaze, a behavioral mechanism for directing attention to environmental cues. We found a significant positive association between parent alternating gaze and neural entropy in frontal and central regions. These results suggest a relationship between parent behavior and infant neural mechanisms that regulate social attention, underlying the importance of parental cues in forming neural networks.

2.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562688

RESUMO

Parents play a significant role in directing infant's attention to environmental stimuli via joint attention. We hypothesized that infants whose parents provide more bids for joint attention will display a more complex neural response when viewing social scenes. Sixty-one 8-month-old infants underwent electroencephalography (EEG) while viewing videos of joint- and parallel-play and participated in a parent-infant free play interaction. EEG data was analyzed using multiscale entropy, which quantifies moment-to-moment neural variability. Free play interactions were coded for parent alternating gaze, a behavioral mechanism for directing attention to environmental cues. We found a significant positive association between parent alternating gaze and neural entropy in frontal and central brain regions. These results suggest a relationship between parent behavior and infant neural mechanisms that regulate social attention, underlying the importance of parent cues in the formation of neural networks in infancy.

3.
Dev Cogn Neurosci ; 58: 101163, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270100

RESUMO

It is increasingly understood that moment-to-moment brain signal variability - traditionally modeled out of analyses as mere "noise" - serves a valuable functional role related to development, cognitive processing, and psychopathology. Multiscale entropy (MSE) - a measure of signal irregularity across temporal scales - is an increasingly popular analytic technique in human neuroscience calculated from time series such as electroencephalography (EEG) signals. MSE provides insight into the time-structure and (non)linearity of fluctuations in neural activity and network dynamics, capturing the brain's moment-to-moment complexity as it operates on multiple time scales. MSE is emerging as a powerful predictor of developmental processes and outcomes. However, differences in data preprocessing and MSE computation make it challenging to compare results across studies. Here, we (1) provide an introduction to MSE for developmental researchers, (2) demonstrate the effect of preprocessing procedures on scale-wise entropy estimates, and (3) establish a standardized EEG preprocessing and entropy estimation pipeline that adapts a critical modification to the original MSE algorithm, and generates reliable scale-wise entropy estimates capable of differentiating developmental stages and cognitive states. This novel pipeline - the Automated Preprocessing Pipe-Line for the Estimation of Scale-wise Entropy from EEG Data (APPLESEED) is fully automated, customizable, and freely available for download from https://github.com/mhpuglia/APPLESEED.


Assuntos
Encéfalo , Eletroencefalografia , Criança , Humanos , Entropia , Eletroencefalografia/métodos
4.
BMC Med ; 18(1): 292, 2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919469

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

5.
BMC Med ; 18(1): 244, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799881

RESUMO

BACKGROUND: How the brain develops accurate models of the external world and generates appropriate behavioral responses is a vital question of widespread multidisciplinary interest. It is increasingly understood that brain signal variability-posited to enhance perception, facilitate flexible cognitive representations, and improve behavioral outcomes-plays an important role in neural and cognitive development. The ability to perceive, interpret, and respond to complex and dynamic social information is particularly critical for the development of adaptive learning and behavior. Social perception relies on oxytocin-regulated neural networks that emerge early in development. METHODS: We tested the hypothesis that individual differences in the endogenous oxytocinergic system early in life may influence social behavioral outcomes by regulating variability in brain signaling during social perception. In study 1, 55 infants provided a saliva sample at 5 months of age for analysis of individual differences in the oxytocinergic system and underwent electroencephalography (EEG) while listening to human vocalizations at 8 months of age for the assessment of brain signal variability. Infant behavior was assessed via parental report. In study 2, 60 infants provided a saliva sample and underwent EEG while viewing faces and objects and listening to human speech and water sounds at 4 months of age. Infant behavior was assessed via parental report and eye tracking. RESULTS: We show in two independent infant samples that increased brain signal entropy during social perception is in part explained by an epigenetic modification to the oxytocin receptor gene (OXTR) and accounts for significant individual differences in social behavior in the first year of life. These results are measure-, context-, and modality-specific: entropy, not standard deviation, links OXTR methylation and infant behavior; entropy evoked during social perception specifically explains social behavior only; and only entropy evoked during social auditory perception predicts infant vocalization behavior. CONCLUSIONS: Demonstrating these associations in infancy is critical for elucidating the neurobiological mechanisms accounting for individual differences in cognition and behavior relevant to neurodevelopmental disorders. Our results suggest that an epigenetic modification to the oxytocin receptor gene and brain signal entropy are useful indicators of social development and may hold potential diagnostic, therapeutic, and prognostic value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA