Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0298448, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38394306

RESUMO

Monoterpenes are a large class of naturally occurring fragrant molecules. These chemicals are commonly used in olfactory studies to survey neural activity and probe the behavioral limits of odor discrimination. Monoterpenes (typically in the form of essential oils) have been used for centuries for therapeutic purposes and have pivotal roles in various biological and medical applications. Despite their importance for multiple lines of research using rodent models and the role of the olfactory system in detecting these volatile chemicals, the murine sensitivity to monoterpenes remains mostly unexplored. We assayed the ability of C57BL/6J mice to detect nine different monoterpenes (the acyclic monoterpenes: geraniol, citral, and linalool; the monocyclic monoterpenes: r-limonene, s-limonene, and γ-terpinene; and the bicyclic monoterpenes: eucalyptol, α-pinene, and ß-pinene) using a head-fixed Go / No-Go operant conditioning assay. We found that mice can reliably detect monoterpene concentrations in the low parts per billion (ppb) range. Specifically, mice were most sensitive to geraniol (threshold: 0.7 ppb) and least sensitive to γ-terpinene (threshold: 18.1 ppb). These estimations of sensitivity serve to set the lower limit of relevant monoterpene concentrations for functional experiments in mice. To define an upper limit, we estimated the maximum concentrations that a mouse may experience in nature by collating published headspace analyses of monoterpene concentrations emitted from natural sources. We found that natural monoterpenes concentrations typically ranged from ~1 to 1000 ppb. It is our hope that this dataset will help researchers use appropriate monoterpene concentrations for functional studies and provide context for the vapor-phase delivery of these chemicals in studies investigating their biological activity in mice.


Assuntos
Monoterpenos Acíclicos , Monoterpenos Cicloexânicos , Monoterpenos , Camundongos , Animais , Limoneno , Camundongos Endogâmicos C57BL , Monoterpenos/farmacologia , Monoterpenos Bicíclicos
2.
STAR Protoc ; 4(4): 102635, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805920

RESUMO

Perceptual measures of odor threshold provide a mechanism to compare sensitivity across species and to gauge stimulus concentrations for functional experiments. Here, we present a protocol to precisely quantify the odor detection threshold of mice. We describe the construction of a head-fixed operant conditioning behavioral rig and provide details of the training and testing procedures. This approach can be used to compare the sensitivity of mice across odorants and to quantify detection differences associated with genetic mutations or pharmacological manipulations. For complete details on the use and execution of this protocol, please refer to Johnson et al. (2023),1 Jennings et al. (2022),2 Williams and Dewan (2020),3 and Dewan et al. (2018).4.


Assuntos
Odorantes , Olfato , Animais , Camundongos , Condicionamento Operante
3.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571813

RESUMO

Olfactory studies frequently utilize odor stimuli consisting of volatiles created from liquid dilutions of various chemicals. A problem arises if the researcher relies on these liquid dilutions to extrapolate vapor concentrations based on ideal gas behavior. For most chemicals, the relationship between liquid and vapor concentration deviates from these laws of proportionality due to interactions between the chemical and the solvent. Here, we describe a method to estimate vapor-phase concentrations of diluted odorants using a photoionization detector. To demonstrate the utility of this method, we assessed the relationship between liquid-/vapor-phase concentrations for 14 odorants (7 alcohols, 1 ester, and 6 aldehydes) in 5 different solvents (water, mineral oil, diethyl phthalate, dipropylene glycol, and propylene glycol). An analysis of 7 additional esters is also included to assess how carbon chain length and functional group, interacts with these solvents (for a total of 105 odorant/solvent pairs). Our resulting equilibrium equations successfully corrected for behavioral sensitivity differences observed in mice tested with the same odorant in different solvents and were overall similar to published measurements using a gas chromatography-based approach. In summary, this method should allow researchers to determine the vapor-phase concentration of diluted odorants and will hopefully assist in more accurate comparisons of odorant concentrations across olfactory studies.


Assuntos
Odorantes , Olfato , Camundongos , Animais , Solventes , Aldeídos , Propilenoglicol
4.
Environ Health Perspect ; 130(8): 87003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35921071

RESUMO

BACKGROUND: Studies of thunderstorm asthma to understand risk factors using high-resolution climate data and asthma outcomes on a large scale are scarce. Moreover, thunderstorm asthma is not well studied in the United States. OBJECTIVES: We examined whether climate parameters involved in thunderstorms are associated with emergency department (ED) visits for acute asthma attacks in the United States. METHODS: We analyzed 63,789 asthma-related, daily ED visits for all age groups, and thunderstorm-associated climate data in Louisiana during 2010 through 2012. We performed time-series analyses using quasi-Poisson regression models with natural cubic splines of date, parish, holiday, day of week, season, daily maximum concentrations of ozone (O3) and fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)], and daily mean pressure, precipitation, and temperature. Because of a significant interaction effect between temperature and lightning days on asthma-related visits, we performed stratified analyses by days with/without lightning or thunderstorm (defined by any lightning and precipitation). RESULTS: On thunderstorm days, higher asthma-related ED visits were associated with higher daily mean precipitation [relative risk (RR)=1.145 per 1 g/m2/s (95% CI: 1.009, 1.300)] and lower daily mean temperature [RR=1.011 per 1°C change (1.000-1.021)] without carry-over effect to the next non-thunderstorm day. These higher risks were found mainly among children and adults <65 years of age. We observed similar results on lightning days. However, we did not find similar associations for non-thunderstorm or non-lightning days. Daily maximum O3 and PM2.5 levels were not significantly associated with asthma ED visits on thunderstorm days. DISCUSSION: Higher precipitation and lower temperature on thunderstorm days appear to contribute to asthma attacks among people with asthma, suggesting they should consider taking precautions during thunderstorms. EDs should consider preparing for a potential increase of asthma-related visits and ensuring sufficient stock of emergency medication and supplies for forecasted severe thunderstorm days. https://doi.org/10.1289/EHP10440.


Assuntos
Poluentes Atmosféricos , Asma , Adulto , Poluentes Atmosféricos/análise , Asma/induzido quimicamente , Criança , Serviço Hospitalar de Emergência , Humanos , Material Particulado/análise , Temperatura , Estados Unidos/epidemiologia
5.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816188

RESUMO

Measures of behavioral sensitivity provide an important guide for choosing the stimulus concentrations used in functional experiments. This information is particularly valuable in the olfactory system as the neural representation of an odorant changes with concentration. This study focuses on acetate esters because they are commonly used to survey neural activity in a variety of olfactory regions, probe the behavioral limits of odor discrimination, and assess odor structure-activity relationships in mice. Despite their frequent use, the relative sensitivity of these odorants in mice is not available. Thus, we assayed the ability of C57BL/6J mice to detect seven different acetates (propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, octyl acetate, isobutyl acetate, and isoamyl acetate) using a head-fixed Go/No-Go operant conditioning assay combined with highly reproducible stimulus delivery. To aid in the accessibility and applicability of our data, we have estimated the vapor-phase concentrations of these odorants in five different solvents using a photoionization detector-based approach. The resulting liquid-/vapor-phase equilibrium equations successfully corrected for behavioral sensitivity differences observed in animals tested with the same odorant in different solvents. We found that mice are most sensitive to isobutyl acetate and least sensitive to propyl acetate. These updated measures of sensitivity will hopefully guide experimenters in choosing appropriate stimulus concentrations for experiments using these odorants.


Assuntos
Ésteres , Odorantes , Acetatos/farmacologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Olfato , Solventes
6.
Chem Senses ; 45(7): 513-521, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32609815

RESUMO

Probing the neural mechanisms that underlie each sensory system requires the presentation of perceptually appropriate stimulus concentrations. This is particularly relevant in the olfactory system as additional odorant receptors typically respond with increasing stimulus concentrations. Thus, perceptual measures of olfactory sensitivity provide an important guide for functional experiments. This study focuses on aliphatic alcohols because they are commonly used to survey neural activity in a variety of olfactory regions, probe the behavioral limits of odor discrimination, and assess odor-structure activity relationships in mice. However, despite their frequent use, a systematic study of the relative sensitivity of these odorants in mice is not available. Thus, we assayed the ability of C57BL/6J mice to detect a homologous series of primary aliphatic alcohols (1-propanol to 1-heptanol) using a head-fixed Go/No-Go operant conditioning assay combined with highly reproducible stimulus delivery. To aid in the accessibility of our data, we report the animal's threshold to each odorant according to the 1) ideal gas condition, 2) nonideal gas condition (factoring in the activity of the odorant in the solvent), and 3) the liquid dilution of the odorant in the olfactometer. Of the odorants tested, mice were most sensitive to 1-hexanol and least sensitive to 1-butanol. These updated measures of murine sensitivity will hopefully guide experimenters in choosing appropriate stimulus concentrations for experiments using these odorants.


Assuntos
Álcoois Graxos/química , Limiar Sensorial/fisiologia , Olfato/fisiologia , 1-Butanol/química , 1-Butanol/farmacologia , 1-Propanol/química , 1-Propanol/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Álcoois Graxos/farmacologia , Feminino , Gases/química , Heptanol/química , Heptanol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Limiar Sensorial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA