Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Dev Res ; 85(1): e22129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37961833

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor characterized by frequent metastasis, rapid disease progression, and a high rate of mortality. Treatment options for OS have remained largely unchanged for decades, consisting primarily of cytotoxic chemotherapy and surgery, thus necessitating the urgent need for novel therapies. Tropolones are naturally occurring seven-membered non-benzenoid aromatic compounds that possess antiproliferative effects in a wide array of cancer cell types. MO-OH-Nap is an α-substituted tropolone that has activity as an iron chelator. Here, we demonstrate that MO-OH-Nap activates all three arms of the unfolded protein response (UPR) pathway and induces apoptosis in a panel of human OS cell lines. Co-incubation with ferric chloride or ammonium ferrous sulfate completely prevents the induction of apoptotic and UPR markers in MO-OH-Nap-treated OS cells. MO-OH-Nap upregulates transferrin receptor 1 (TFR1) protein levels, as well as TFR1, divalent metal transporter 1 (DMT1), iron-regulatory proteins (IRP1, IRP2), ferroportin (FPN), and zinc transporter 14 (ZIP14) transcript levels, demonstrating the impact of MO-OH-Nap on iron-homeostasis pathways in OS cells. Furthermore, MO-OH-Nap treatment restricts the migration and invasion of OS cells in vitro. Lastly, metabolomic profiling of MO-OH-Nap-treated OS cells revealed distinct changes in purine and pyrimidine metabolism. Collectively, we demonstrate that MO-OH-Nap-induced cytotoxic effects in OS cells are dependent on the tropolone's ability to alter cellular iron availability and that this agent exploits key metabolic pathways. These studies support further evaluation of MO-OH-Nap as a novel treatment for OS.


Assuntos
Osteossarcoma , Tropolona , Humanos , Tropolona/farmacologia , Ferro/metabolismo , Ferro/farmacologia , Apoptose , Linhagem Celular , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral
2.
Drug Dev Res ; 84(1): 62-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36433690

RESUMO

Rab GTPases are critical regulators of protein trafficking in the cell. To ensure proper cellular localization and function, Rab proteins must undergo a posttranslational modification, termed geranylgeranylation. In the isoprenoid biosynthesis pathway, the enzyme geranylgeranyl diphosphate synthase (GGDPS) generates the 20-carbon isoprenoid donor (geranylgeranyl pyrophosphate [GGPP]), which is utilized in the prenylation of Rab proteins. We have pursued the development of GGDPS inhibitors (GGSI) as a novel means to target Rab activity in cancer cells. Osteosarcoma (OS) and Ewing sarcoma (ES) are aggressive childhood bone cancers with stagnant survival statistics and limited treatment options. Here we show that GGSI treatment induces markers of the unfolded protein response (UPR) and triggers apoptotic cell death in a variety of OS and ES cell lines. Confirmation that these effects were secondary to cellular depletion of GGPP and disruption of Rab geranylgeranylation was confirmed via experiments using exogenous GGPP or specific geranylgeranyl transferase inhibitors. Furthermore, GGSI treatment disrupts cellular migration and invasion in vitro. Metabolomic profiles of OS and ES cell lines identify distinct changes in purine metabolism in GGSI-treated cells. Lastly, we demonstrate that GGSI treatment slows tumor growth in a mouse model of ES. Collectively, these studies support further development of GGSIs as a novel treatment for OS and ES.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma de Ewing , Animais , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Farnesiltranstransferase/metabolismo , Osteossarcoma/tratamento farmacológico , Sarcoma de Ewing/tratamento farmacológico , Terpenos
3.
Hemasphere ; 6(3): e687, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35243210

RESUMO

Immunoglobulin light-chain (AL) amyloidosis is a rare disease caused by clonal plasma cell secretion of misfolded light chains that assemble as toxic amyloid fibrils, depositing in vital organs including the heart and kidneys, causing organ dysfunction. Plasma cell-directed therapeutics are expected to reduce production of toxic light chain by eliminating amyloidogenic cells in bone marrow, thereby diminishing amyloid fibril deposition and providing the potential for organ recovery. Melphalan flufenamide (melflufen) is a first-in-class peptide-drug conjugate that targets aminopeptidases and rapidly releases alkylating agents inside tumor cells. Melflufen is highly lipophilic, permitting rapid uptake by cells, where it is enzymatically hydrolyzed by aminopeptidases, resulting in intracellular accumulation of the alkylating agents, including melphalan. Previous data demonstrating sensitivity of myeloma cells to melflufen suggest that the drug might be useful in AL amyloidosis. We describe the effects of melflufen on amyloidogenic plasma cells in vitro and ex vivo, demonstrating enhanced cytotoxic effects in comparison to melphalan, as well as novel mechanisms of action through the unfolded protein response (UPR) pathway. These findings provide evidence that melflufen-mediated cytotoxicity extends to amyloidogenic plasma cells, and support the rationale for the evaluation of melflufen in patients with AL amyloidosis.

4.
Exp Hematol Oncol ; 11(1): 5, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139925

RESUMO

BACKGROUND: Multiple myeloma (MM) remains an incurable malignancy, despite the advent of therapies such as proteosome inhibitors (PIs) that disrupt protein homeostasis and induce ER stress. We have pursued inhibition of geranylgeranyl diphosphate synthase (GGDPS) as a novel mechanism by which to target protein homeostasis in MM cells. GGDPS inhibitors (GGSI) disrupt Rab geranylgeranylation, which in turn results in perturbation of Rab-mediated protein trafficking, leading to accumulation of intracellular monoclonal protein, induction of ER stress and apoptosis. Our lead GGSI, RAM2061, has demonstrated favorable pharmacokinetic properties and in vivo efficacy. Here we sought to evaluate if combination therapy with GGSI and PI would result in enhanced disruption of the unfolded protein response (UPR) and increase anti-MM efficacy. METHODS: MTT assays were conducted to evaluate the cytotoxic effects of combining RAM2061 with bortezomib in human MM cells. The effects of RAM2061 and/or PI (bortezomib or carfilzomib) on markers of UPR and apoptosis were evaluated by a combination of immunoblot (ATF4, IRE1, p-eIF2a, cleaved caspases and PARP), RT-PCR (ATF4, ATF6, CHOP, PERK, IRE1) and flow cytometry (Annexin-V). Induction of immunogenic cell death (ICD) was assessed by immunoblot (HMGB1 release) and flow cytometry (calreticulin translocation). Cell assays were performed using both concurrent and sequential incubation with PIs. To evaluate the in vivo activity of GGSI/PI, a flank xenograft using MM.1S cells was performed. RESULTS: Isobologram analysis of cytotoxicity data revealed that sequential treatment of bortezomib with RAM2061 has a synergistic effect in MM cells, while concurrent treatment was primarily additive or mildly antagonistic. The effect of PIs on augmenting RAM2061-induced upregulation of UPR and apoptotic markers was dependent on timing of the PI exposure. Combination treatment with RAM2061 and bortezomib enhanced activation of ICD pathway markers. Lastly, combination treatment slowed MM tumor growth and lengthened survival in a MM xenograft model without evidence of off-target toxicity. CONCLUSION: We demonstrate that GGSI/PI treatment can potentiate activation of the UPR and apoptotic pathway, as well as induce upregulation of markers associated with the ICD pathway. Collectively, these findings lay the groundwork for future clinical studies evaluating combination GGSI and PI therapy in patients with MM.

5.
Mol Cancer Res ; 17(6): 1241-1252, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30814129

RESUMO

Acute myeloid leukemia (AML) is a neoplastic disease characterized by the uncontrolled proliferation and accumulation of immature myeloid cells. A common mutation in AML is the inversion of chromosome 16 [inv (16)], which generates a fusion between the genes for core binding factor beta (CBFB) and smooth muscle myosin heavy chain gene (MYH11), forming the oncogene CBFB-MYH11. The expressed protein, CBFß-SMMHC, forms a heterodimer with the key hematopoietic transcription factor RUNX1. Although CBFß-SMMHC was previously thought to dominantly repress RUNX1, recent work suggests that CBFß-SMMHC functions together with RUNX1 to activate transcription of specific target genes. However, the mechanism of this activity or a requirement for additional cofactors is not known. Here, we show that the epigenetic regulator histone deacetylase 1 (HDAC1) forms a complex with CBFß-SMMHC, colocalizes with RUNX1 and CBFß-SMMHC on the promoters of known fusion protein target genes, and that Hdac1 is required for expression of these genes. These results imply that HDAC1 is an important component of the CBFß-SMMHC transcriptional complex, and that leukemia cells expressing the fusion protein may be sensitive to treatment with HDAC1 inhibitors. Using a knock-in mouse model expressing CBFß-SMMHC, we found that in vivo treatment with the HDAC1 inhibitor entinostat decreased leukemic burden, and induced differentiation and apoptosis of leukemia cells. Together, these results demonstrate that HDAC1 is an important cofactor of CBFß-SMMHC and a potential therapeutic target in inv (16) AML. IMPLICATIONS: This report describes a novel role for HDAC1 as a cofactor for the leukemogenic fusion protein CBFß-SMMHC and shows that inhibitors of HDAC1 effectively target leukemia cells expressing the fusion protein in vivo.


Assuntos
Inversão Cromossômica/genética , Subunidade beta de Fator de Ligação ao Core/genética , Histona Desacetilase 1/genética , Leucemia Mieloide Aguda/genética , Animais , Apoptose/genética , Células COS , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA