RESUMO
Eleven years after invasive Norway rats (Rattus norvegicus) were eradicated from Hawadax Island, in the Aleutian Islands, Alaska, the predicted three-level trophic cascade in the rocky intertidal, with native shorebirds as the apex predator, returned, leading to a community resembling those on rat-free islands with significant decreases in invertebrate species abundances and increases in fleshy algal cover. Rats had indirectly structured the intertidal community via their role as the apex predator in a four-level trophic cascade. Our results are an excellent example of an achievable and relatively short-term community-level recovery following removal of invasive animals. These conservation successes are especially important for islands as their disproportionately high levels of native biodiversity are excessively threatened by invasive mammals.
Assuntos
Biodiversidade , Espécies Introduzidas , Alaska , Animais , Ilhas , RatosRESUMO
Subspecies relationships within the peregrine falcon (Falco peregrinus) have been long debated because of the polytypic nature of melanin-based plumage characteristics used in subspecies designations and potential differentiation of local subpopulations due to philopatry. In North America, understanding the evolutionary relationships among subspecies may have been further complicated by the introduction of captive bred peregrines originating from non-native stock, as part of recovery efforts associated with mid 20th century population declines resulting from organochloride pollution. Alaska hosts all three nominal subspecies of North American peregrine falcons-F. p. tundrius, anatum, and pealei-for which distributions in Alaska are broadly associated with nesting locales within Arctic, boreal, and south coastal maritime habitats, respectively. Unlike elsewhere, populations of peregrine falcon in Alaska were not augmented by captive-bred birds during the late 20th century recovery efforts. Population genetic differentiation analyses of peregrine populations in Alaska, based on sequence data from the mitochondrial DNA control region and fragment data from microsatellite loci, failed to uncover genetic distinction between populations of peregrines occupying Arctic and boreal Alaskan locales. However, the maritime subspecies, pealei, was genetically differentiated from Arctic and boreal populations, and substructured into eastern and western populations. Levels of interpopulational gene flow between anatum and tundrius were generally higher than between pealei and either anatum or tundrius. Estimates based on both marker types revealed gene flow between augmented Canadian populations and unaugmented Alaskan populations. While we make no attempt at formal taxonomic revision, our data suggest that peregrine falcons occupying habitats in Alaska and the North Pacific coast of North America belong to two distinct regional groupings-a coastal grouping (pealei) and a boreal/Arctic grouping (currently anatum and tundrius)-each comprised of discrete populations that are variously intra-regionally connected.
Assuntos
DNA Mitocondrial/genética , Falconiformes/genética , Fluxo Gênico , Especiação Genética , Filogenia , Alaska , Animais , Cruzamento , Canadá , Falconiformes/classificação , Plumas/anatomia & histologia , Feminino , Loci Gênicos , Variação Genética , Masculino , Repetições de Microssatélites , Filogeografia , Pigmentação/genéticaRESUMO
How populations and communities reassemble following disturbances are affected by a number of factors, with the arrival order of founding populations often having a profound influence on later populations and community structure. Kasatochi Island is a small volcano located in the central Aleutian archipelago that erupted violently August 8, 2008, sterilizing the island of avian biodiversity. Prior to the eruption, Kasatochi was the center of abundance for breeding seabirds in the central Aleutian Islands and supported several breeding pairs of peregrine falcons (Falco peregrinus). We examined the reestablishment of peregrine falcons on Kasatochi by evaluating the genetic relatedness among legacy samples collected in 2006 to those collected posteruption and to other falcons breeding along the archipelago. No genotypes found in posteruption samples were identical to genotypes collected from pre-eruption samples. However, genetic analyses suggest that individuals closely related to peregrine falcons occupying pre-eruption Kasatochi returned following the eruption and successfully fledged young; thus, a genetic legacy of pre-eruption falcons was present on posteruption Kasatochi Island. We hypothesize that the rapid reestablishment of peregrine falcons on Kasatochi was likely facilitated by behavioral characteristics of peregrine falcons breeding in the Aleutian Islands, such as year-round residency and breeding site fidelity, the presence of an abundant food source (seabirds), and limited vegetation requirements by seabirds and falcons.
RESUMO
BACKGROUND: The spotted wing drosophila (SWD), Drosophila suzukii (Matsumura), is an invasive vinegar fly with a preference for infesting commercially viable berries and stone fruits. SWD infestations can reduce yields significantly, necessitating additional management activities. This analysis estimates economic losses in the California raspberry industry that have resulted from the SWD invasion. RESULTS: California raspberry producers experienced considerable revenue losses and management costs in the first years following SWD's invasion of North America. Conventional producers have since developed effective chemical management programs, virtually eliminating revenue losses due to SWD and reducing the cost of management to that of purchasing and applying insecticides more often. Organic raspberry producers, who do not have access to the same chemical controls, continue to confront substantial SWD-related revenue losses. These losses can be mitigated only by applying expensive insecticides registered for organic use and by performing labor-intensive field sanitation. CONCLUSION: SWD's invasion into North America has caused extensive crop losses to berry and cherry crops in California and elsewhere. Agricultural producers and researchers have responded quickly to this pest by developing management programs that significantly reduce revenue losses. Economic losses are expected to continue to fall as producers learn to manage SWD more efficiently and as new control tactics become available. © 2016 Society of Chemical Industry.
Assuntos
Produtos Agrícolas/economia , Drosophila , Controle de Insetos/economia , Rubus/parasitologia , Animais , California , Controle de Insetos/métodos , Inseticidas/economia , Agricultura Orgânica/economia , Agricultura Orgânica/métodosRESUMO
We introduce a novel and potentially powerful, yet relatively simple extension of the spectral inversion method, which offers the possibility of carrying out 4-dimensional (4D) atomic force spectroscopy. With the extended spectral inversion method it is theoretically possible to measure the tip-sample forces as a function of the three Cartesian coordinates in the scanning volume (x, y and z) and the vertical velocity of the tip, through a single 2-dimensional (2D) surface scan. Although signal-to-noise ratio limitations can currently prevent the accurate experimental implementation of the 4D method, and the extraction of rate-dependent material properties from the force maps is a formidable challenge, the spectral inversion method is a promising approach due to its dynamic nature, robustness, relative simplicity and previous successes.
RESUMO
BACKGROUND: Economic costs of spotted wing drosophila (SWD) include yield and associated revenue losses, labor and material costs for monitoring and management and revenue losses due to the closure of export markets should fruit from SWD-infested regions be banned by trading partners. This analysis focuses on two types of loss in the California raspberry and strawberry industries: yield losses in the absence of management, and insecticide material costs on a per treatment basis. It computes the cost of a specific management program for raspberries in California's Central Coast region. RESULTS: Insecticide material and application costs per treatment and the cost of the management program are small relative to the yield losses in the absence of management that are observed by growers, researchers and others in initial infestations. CONCLUSION: It is difficult to evaluate precisely the share of pest management program costs due to SWD because insecticides are sometimes used to manage multiple pests, and because labor-intensive field sanitation efforts to control SWD are recommended practices already. Given these considerations, this analysis finds that the benefits to SWD management well outweigh the costs examined here. Evaluating the efficacy of managing SWD is essential in assessing the risks that SWD poses and the benefits of pest management programs.
Assuntos
Produtos Agrícolas/economia , Drosophila , Fragaria , Controle de Insetos/economia , Rosaceae , Animais , California , Análise Custo-Benefício , Frutas/economiaRESUMO
The ingestion of plastic marine debris is a chronic problem for some of the world's seabird species, contributing to reduced chick survival, population declines, and deposition of contaminants via absorption in birds' gastrointestinal tract. We analysed the frequency of ingested plastic in chick meals delivered by adults in four species of auklet - Crested (Aethia cristatella), Least (A. pusilla), Parakeet (A. psittacula), and Whiskered (A. pygmaea) - from three breeding colonies in the Aleutian Islands, Alaska, USA over a 14-year period from 1993 to 2006. Among 2541 chick meals, we found plastic in only one - from a Whiskered Auklet on Buldir Island in 1993. While adult Parakeet Auklets have a high frequency of plastic ingestion (over 90%), no chick meals contained plastic. Unlike other seabirds, the planktivorous auklets do not appear to offload plastic to their chicks, and we conclude that auklet chicks are probably at a low risk of contamination from plastic debris.