Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(16): 4581-4588, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35656134

RESUMO

One of the many functions of reduction-oxidation (redox) cofactors is to mediate electron transfer in biological enzymes catalyzing redox-based chemical transformation reactions. There are numerous examples of enzymes that utilize redox cofactors to form electron transfer relays to connect catalytic sites to external electron donors and acceptors. The compositions of relays are diverse and tune transfer thermodynamics and kinetics towards the chemical reactivity of the enzyme. Diversity in relay design is exemplified among different members of hydrogenases, enzymes which catalyze reversible H2 activation, which also couple to diverse types of donor and acceptor molecules. The [FeFe]-hydrogenase I from Clostridium acetobutylicum (CaI) is a member of a large family of structurally related enzymes where interfacial electron transfer is mediated by a terminal, non-canonical, His-coordinated, [4Fe-4S] cluster. The function of His coordination was examined by comparing the biophysical properties and reactivity to a Cys substituted variant of CaI. This demonstrated that His coordination strongly affected the distal [4Fe-4S] cluster spin state, spin pairing, and spatial orientations of molecular orbitals, with a minor effect on reduction potential. The deviations in these properties by substituting His for Cys in CaI, correlated with pronounced changes in electron transfer and reactivity with the native electron donor-acceptor ferredoxin. The results demonstrate that differential coordination of the surface localized [4Fe-4S]His cluster in CaI is utilized to control intermolecular and intramolecular electron transfer where His coordination creates a physical and electronic environment that enables facile electron exchange between electron carrier molecules and the iron-sulfur cluster relay for coupling to reversible H2 activation at the catalytic site.

2.
J Am Chem Soc ; 142(3): 1227-1235, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31816235

RESUMO

Hydrogenases display a wide range of catalytic rates and biases in reversible hydrogen gas oxidation catalysis. The interactions of the iron-sulfur-containing catalytic site with the local protein environment are thought to contribute to differences in catalytic reactivity, but this has not been demonstrated. The microbe Clostridium pasteurianum produces three [FeFe]-hydrogenases that differ in "catalytic bias" by exerting a disproportionate rate acceleration in one direction or the other that spans a remarkable 6 orders of magnitude. The combination of high-resolution structural work, biochemical analyses, and computational modeling indicates that protein secondary interactions directly influence the relative stabilization/destabilization of different oxidation states of the active site metal cluster. This selective stabilization or destabilization of oxidation states can preferentially promote hydrogen oxidation or proton reduction and represents a simple yet elegant model by which a protein catalytic site can confer catalytic bias.


Assuntos
Hidrogênio/metabolismo , Hidrogenase/metabolismo , Catálise , Clostridium/enzimologia , Oxirredução , Difração de Raios X
3.
J Am Chem Soc ; 139(28): 9544-9550, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28635269

RESUMO

An [FeFe]-hydrogenase from Clostridium pasteurianum, CpI, is a model system for biological H2 activation. In addition to the catalytic H-cluster, CpI contains four accessory iron-sulfur [FeS] clusters in a branched series that transfer electrons to and from the active site. In this work, potentiometric titrations have been employed in combination with electron paramagnetic resonance (EPR) spectroscopy at defined electrochemical potentials to gain insights into the role of the accessory clusters in catalysis. EPR spectra collected over a range of potentials were deconvoluted into individual components attributable to the accessory [FeS] clusters and the active site H-cluster, and reduction potentials for each cluster were determined. The data suggest a large degree of magnetic coupling between the clusters. The distal [4Fe-4S] cluster is shown to have a lower reduction potential (∼ < -450 mV) than the other clusters, and molecular docking experiments indicate that the physiological electron donor, ferredoxin (Fd), most favorably interacts with this cluster. The low reduction potential of the distal [4Fe-4S] cluster thermodynamically restricts the Fdox/Fdred ratio at which CpI can operate, consistent with the role of CpI in recycling Fdred that accumulates during fermentation. Subsequent electron transfer through the additional accessory [FeS] clusters to the H-cluster is thermodynamically favorable.


Assuntos
Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Prótons , Termodinâmica , Biocatálise , Clostridium/enzimologia , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/química , Hidrogenase/isolamento & purificação , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/isolamento & purificação , Simulação de Acoplamento Molecular , Oxirredução , Potenciometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA