Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 21(3): 48, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949858

RESUMO

Expression of the receptor tyrosine kinase HER3 is negatively correlated with survival in ovarian cancer, and HER3 overexpression is associated with cancer progression and therapeutic resistance. Thus, improvements in HER3-targeted therapy could lead to significant clinical impact for ovarian cancer patients. Previous work from our group established multivalency as a potential strategy to improve the therapeutic efficacy of HER3-targeted ligands, including affibodies. Others have established HER3 affibodies as viable and potentially superior alternatives to monoclonal antibodies for cancer therapy. Here, bivalent HER3 affibodies were engineered for optimized production, specificity, and function as evaluated in an ovarian cancer xenograft model. Enhanced inhibition of HER3-mediated signaling and increased HER3 downregulation associated with multivalency could be achieved with a simplified construct, potentially increasing translational potential. Additionally, functional effects of affibodies due to multivalency were found to be specific to HER3 targeting, suggesting a unique molecular mechanism. Further, HER3 affibodies demonstrated efficacy in ovarian cancer xenograft mouse models, both as single agents and in combination with carboplatin. Overall, these results reinforce the potential of HER3-targeted affibodies for cancer therapy and establish treatment of ovarian cancer as an application where multivalent HER3 ligands may be useful. Further, this work introduces the potential of HER3 affibodies to be utilized as part of clinically relevant combination therapies (e.g., with carboplatin).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-3/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Meia-Vida , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Pharm ; 14(4): 1047-1056, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248115

RESUMO

The receptor tyrosine kinase HER3 has emerged as a therapeutic target in ovarian, prostate, breast, lung, and other cancers due to its ability to potently activate the PI3K/Akt pathway, especially via dimerization with HER2, as well as for its role in mediating drug resistance. Enhanced efficacy of HER3-targeted therapeutics would therefore benefit a wide range of patients. This study evaluated the potential of multivalent presentation, through protein engineering, to enhance the effectiveness of HER3-targeted affibodies as alternatives to monoclonal antibody therapeutics. Assessment of multivalent affibodies on a variety of cancer cell lines revealed their broad ability to improve inhibition of Neuregulin (NRG)-induced HER3 and Akt phosphorylation compared to monovalent analogues. Engineered multivalency also promoted enhanced cancer cell growth inhibition by affibodies as single agents and as part of combination therapy approaches. Mechanistic investigations revealed that engineered multivalency enhanced affibody-mediated HER3 downregulation in multiple cancer cell types. Overall, these results highlight the promise of engineered multivalency as a general strategy for enhanced efficacy of HER3-targeted therapeutics against a variety of cancers.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Regulação para Baixo/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Receptor ErbB-3/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dimerização , Humanos , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Engenharia de Proteínas/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA