Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biol Methods Protoc ; 9(1): bpae027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800072

RESUMO

Picrosirius red staining constitutes an important and broadly used tool to visualize collagen and fibrosis in various tissues. Although multiple qualitative and quantitative analysis methods to evaluate fibrosis are available, many require specialized devices and software or lack objectivity and scalability. Here, we aimed to develop a versatile and powerful "QuantSeg" macro in the FIJI image processing software capable of automated, robust, and quick collagen quantification in cardiac tissue from light micrographs. To examine different patterns of fibrosis, an optional segmentation algorithm was implemented. To ensure the method's validity, we quantified the collagen content in a set of wild-type versus plakoglobin-knockout murine hearts exhibiting extensive fibrosis using both the macro and an established, fluorescence microscopy-based method, and compared results. To demonstrate the capabilities of the segmentation feature, rat hearts were examined post-myocardial infarction. We found the QuantSeg macro to robustly detect the differences in fibrosis between knockout and control hearts. In sections with low collagen content, the macro yielded more consistent results than using the fluorescence microscopy-based technique. With its wide range of output parameters, ease of use, cost effectiveness, and objectivity, the QuantSeg macro has the potential to become an established method for analysis of PSR-stained tissue. The novel segmentation feature allows for automated evaluation of different patterns of cardiac fibrosis for the first time.

2.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36795511

RESUMO

Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin-KO AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and atomic force microscopy (AFM) revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cardiomyocytes treated with erlotinib, an EGFR inhibitor, revealed upregulation of Rho-associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR and, thereby, stabilizing desmosome integrity via ROCK might provide treatment options for AC.


Assuntos
Desmossomos , Miócitos Cardíacos , Animais , Camundongos , Adesão Celular/fisiologia , Desmogleína 2/metabolismo , Desmossomos/metabolismo , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Miócitos Cardíacos/metabolismo , Quinases Associadas a rho/metabolismo
3.
Circ Res ; 132(2): e43-e58, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36656972

RESUMO

BACKGROUND: Nuclear envelope proteins play an important role in the pathogenesis of hereditary cardiomyopathies. Recently, a new form of arrhythmic cardiomyopathy caused by a homozygous mutation (p.L13R) in the inner nuclear membrane protein LEMD2 was discovered. The aim was to unravel the molecular mechanisms of mutant LEMD2 in the pathogenesis of cardiomyopathy. METHODS: We generated a Lemd2 p.L13R knock-in mouse model and a corresponding cell model via CRISPR/Cas9 technology and investigated the cardiac phenotype as well as cellular and subcellular mechanisms of nuclear membrane rupture and repair. RESULTS: Knock-in mice developed a cardiomyopathy with predominantly endocardial fibrosis, left ventricular dilatation, and systolic dysfunction. Electrocardiograms displayed pronounced ventricular arrhythmias and conduction disease. A key finding of knock-in cardiomyocytes on ultrastructural level was a significant increase in nuclear membrane invaginations and decreased nuclear circularity. Furthermore, increased DNA damage and premature senescence were detected as the underlying cause of fibrotic and inflammatory remodeling. As the p.L13R mutation is located in the Lap2/Emerin/Man1 (LEM)-domain, we observed a disrupted interaction between mutant LEMD2 and BAF (barrier-to-autointegration factor), which is required to initiate the nuclear envelope rupture repair process. To mimic increased mechanical stress with subsequent nuclear envelope ruptures, we investigated mutant HeLa-cells upon electrical stimulation and increased stiffness. Here, we demonstrated impaired nuclear envelope rupture repair capacity, subsequent cytoplasmic leakage of the DNA repair factor KU80 along with increased DNA damage, and recruitment of the cGAS (cyclic GMP-AMP synthase) to the nuclear membrane and micronuclei. CONCLUSIONS: We show for the first time that the Lemd2 p.L13R mutation in mice recapitulates human dilated cardiomyopathy with fibrosis and severe ventricular arrhythmias. Impaired nuclear envelope rupture repair capacity resulted in increased DNA damage and activation of the cGAS/STING/IFN pathway, promoting premature senescence. Hence, LEMD2 is a new player inthe disease group of laminopathies.


Assuntos
Cardiomiopatia Dilatada , Proteínas de Membrana , Proteínas Nucleares , Animais , Humanos , Camundongos , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Fibrose , Proteínas de Membrana/genética , Mutação , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética
4.
FEBS Open Bio ; 13(1): 118-132, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36352324

RESUMO

Recent evidence demonstrated that alterations in the QT interval duration on the ECG are not only determined by mutations in genes for ion channels, but also by modulators of ion channels. Changes in the QT interval duration beyond certain thresholds are pathological and can lead to sudden cardiac death. We here focus on the ion channel modulator nitric oxide synthase 1 adaptor protein (Nos1ap). Whole-cell patch-clamp measurements of a conditional transgenic mouse model exhibiting cardiac-specific Nos1ap over-expression revealed a Nos1ap-dependent increase of L-type calcium channel nitrosylation, which led to increased susceptibility to ventricular tachycardias associated with a decrease in QT duration and shortening of APD90 duration. Survival was significantly reduced (60% after 12 weeks vs. 100% in controls). Examination of the structural features of the hearts of transgenic mice revealed constant heart dimensions and wall thickness without abnormal fibrosis content or BNP production after 3 months of Nos1ap over-expression compared to controls. Nos1ap over-expression did not alter cGMP production or ROS concentration. Our study showed that myocardial over-expression of Nos1ap leads to the shortening of the QT interval and reduces the survival rate of transgenic animals, perhaps via the development of ventricular arrhythmias. We conclude that Nos1ap overexpression causes targeted subcellular localization of Nos1 to the CaV1.2 with a subsequent decrease of ADP90 and the QT interval. This causes detrimental cardiac arrhythmias in transgenic mice.


Assuntos
Síndrome do QT Longo , Camundongos , Animais , Síndrome do QT Longo/genética , Camundongos Transgênicos , Genótipo , Eletrocardiografia , Arritmias Cardíacas , Proteínas Adaptadoras de Transdução de Sinal/genética
5.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076925

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease caused by heterozygous missense mutations within the gene encoding for the nuclear envelope protein transmembrane protein 43 (TMEM43). The disease is characterized by myocyte loss and fibro-fatty replacement, leading to life-threatening ventricular arrhythmias and sudden cardiac death. However, the role of TMEM43 in the pathogenesis of ACM remains poorly understood. In this study, we generated cardiomyocyte-restricted transgenic zebrafish lines that overexpress eGFP-linked full-length human wild-type (WT) TMEM43 and two genetic variants (c.1073C>T, p.S358L; c.332C>T, p.P111L) using the Tol2-system. Overexpression of WT and p.P111L-mutant TMEM43 was associated with transcriptional activation of the mTOR pathway and ribosome biogenesis, and resulted in enlarged hearts with cardiomyocyte hypertrophy. Intriguingly, mutant p.S358L TMEM43 was found to be unstable and partially redistributed into the cytoplasm in embryonic and adult hearts. Moreover, both TMEM43 variants displayed cardiac morphological defects at juvenile stages and ultrastructural changes within the myocardium, accompanied by dysregulated gene expression profiles in adulthood. Finally, CRISPR/Cas9 mutants demonstrated an age-dependent cardiac phenotype characterized by heart enlargement in adulthood. In conclusion, our findings suggest ultrastructural remodeling and transcriptomic alterations underlying the development of structural and functional cardiac defects in TMEM43-associated cardiomyopathy.


Assuntos
Displasia Arritmogênica Ventricular Direita , Proteínas de Membrana , Miocárdio , Adulto , Animais , Displasia Arritmogênica Ventricular Direita/genética , Heterozigoto , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Miocárdio/metabolismo , Miocárdio/patologia , Peixe-Zebra/genética
7.
JCI Insight ; 5(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841221

RESUMO

Arrhythmogenic cardiomyopathy (AC) is a heart disease often caused by mutations in genes coding for desmosomal proteins, including desmoglein-2 (DSG2), plakoglobin (PG), and desmoplakin (DP). Therapy is based on symptoms and limiting arrhythmia, because the mechanisms by which desmosomal components control cardiomyocyte function are largely unknown. A new paradigm could be to stabilize desmosomal cardiomyocyte adhesion and hyperadhesion, which renders desmosomal adhesion independent from Ca2+. Here, we further characterized the mechanisms behind enhanced cardiomyocyte adhesion and hyperadhesion. Dissociation assays performed in HL-1 cells and murine ventricular cardiac slice cultures allowed us to define a set of signaling pathways regulating cardiomyocyte adhesion under basal and hyperadhesive conditions. Adrenergic signaling, activation of PKC, and inhibition of p38MAPK enhanced cardiomyocyte adhesion, referred to as positive adhesiotropy, and induced hyperadhesion. Activation of ERK1/2 paralleled positive adhesiotropy, whereas adrenergic signaling induced PG phosphorylation at S665 under both basal and hyperadhesive conditions. Adrenergic signaling and p38MAPK inhibition recruited DSG2 to cell junctions. In PG-deficient mice with an AC phenotype, only PKC activation and p38MAPK inhibition enhanced cardiomyocyte adhesion. Our results demonstrate that cardiomyocyte adhesion can be stabilized by different signaling mechanisms, which are in part offset in PG-deficient AC.


Assuntos
Adesão Celular , Átrios do Coração/fisiopatologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/fisiologia , gama Catenina/metabolismo , Animais , Células Cultivadas , Átrios do Coração/citologia , Junções Intercelulares , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Miócitos Cardíacos/citologia , Transdução de Sinais , gama Catenina/genética
8.
Case Rep Infect Dis ; 2019: 3537507, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240140

RESUMO

A rare consequence of dog bites is the infection with Capnocytophaga canimorsus, and only a few cases have been documented. We describe a 41-year-old, formerly healthy woman who died from septic shock and multiorgan failure. It is the first case of a young individual without obvious immunosuppression.

9.
Transl Res ; 208: 15-29, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30802431

RESUMO

Arrhythmogenic cardiomyopathy is a genetic heart muscle disorder characterized by fibro-fatty replacement of cardiomyocytes leading to life-threatening ventricular arrhythmias, heart failure, and sudden cardiac death. Mutations in genes encoding cardiac junctional proteins are known to cause about half of cases, while remaining genetic causes are unknown. Using exome sequencing, we identified 2 missense variants (p.H33N and p.H77Y) that were predicted to be damaging in the integrin-linked kinase (ILK) gene in 2 unrelated families. The p.H33N variant was found to be de novo. ILK links integrins and the actin cytoskeleton, and is essential for the maintenance of normal cardiac function. Both of the new variants are located in the ILK ankyrin repeat domain, which binds to the first LIM domain of the adaptor proteins PINCH1 and PINCH2. In silico binding studies proposed that the human variants disrupt the ILK-PINCH complex. Recombinant mutant ILK expressed in H9c2 rat myoblast cells shows aberrant prominent cytoplasmic localization compared to the wild-type. Expression of human wild-type and mutant ILK under the control of the cardiac-specific cmlc2 promotor in zebrafish shows that p.H77Y and p.P70L, a variant previously reported in a dilated cardiomyopathy family, cause cardiac dysfunction and death by about 2-3 weeks of age. Our findings provide genetic and functional evidence that ILK is a cardiomyopathy disease gene and highlight its relevance for diagnosis and genetic counseling of inherited cardiomyopathies.


Assuntos
Arritmias Cardíacas/genética , Cardiomiopatias/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Adolescente , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Proteínas Serina-Treonina Quinases/química , Ratos , Homologia de Sequência de Aminoácidos , Sequenciamento do Exoma , Peixe-Zebra/genética
10.
J Mol Med (Berl) ; 96(11): 1239-1249, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30293136

RESUMO

In continuously beating cells like cardiac myocytes, there are rapid alterations of cytosolic Ca2+ levels. We therefore hypothesize that decoding Ca2+ signals for hypertrophic signaling requires intracellular Ca2+ microdomains that are partly independent from cytosolic Ca2+. Furthermore, there is a need for a Ca2+ sensor within these microdomains that translates Ca2+ signals into hypertrophic signaling. Recent evidence suggested that the nucleus of cardiac myocytes might be a Ca2+ microdomain and that calcineurin, once translocated into the nucleus, could act as a nuclear Ca2+ sensor. We demonstrate that nuclear calcineurin was able to act as a nuclear Ca2+ sensor detecting local Ca2+ release from the nuclear envelope via IP3R. Nuclear calcineurin mutants defective for Ca2+ binding failed to activate NFAT-dependent transcription. Under hypertrophic conditions Ca2+ transients in the nuclear microdomain were significantly higher than in the cytosol providing a basis for sustained calcineurin/NFAT-mediated signaling uncoupled from cytosolic Ca2+. Measurements of nuclear and cytosolic Ca2+ transients in IP3 sponge mice showed no increase of Ca2+ levels during diastole as we detected in wild-type mice. Nuclei, isolated from ventricular myocytes of mice after chronic Ang II treatment, showed an elevation of IP3R2 expression which was dependent on calcineurin/NFAT signaling and persisted for 3 weeks after removal of the Ang II stimulus. These data provide an explanation how Ca2+ and calcineurin might regulate transcription in cardiomyocytes in response to neurohumoral signals independently from their role in cardiac contraction control. KEY MESSAGES: • Calcineurin acts as an intranuclear Ca2+ sensor to promote NFAT activity. • Nuclear Ca2+ in cardiac myocytes increases via IP3R2 upon Ang II stimulation. • IP3R2 expression is directly dependent on calcineurin/NFAT.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Membrana Nuclear/metabolismo , Angiotensina II/farmacologia , Animais , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Ratos Wistar
11.
Sci Rep ; 6: 35758, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767176

RESUMO

The objective of this study was to identify unknown modulators of Calcineurin (Cn)-NFAT signaling. Measurement of NFAT reporter driven luciferase activity was therefore utilized to screen a human cardiac cDNA-library (~107 primary clones) in C2C12 cells through serial dilutions until single clones could be identified. This extensive screening strategy culminated in the identification of SUMO2 as a most efficient Cn-NFAT activator. SUMO2-mediated activation of Cn-NFAT signaling in cardiomyocytes translated into a hypertrophic phenotype. Prohypertrophic effects were also observed in mice expressing SUMO2 in the heart using AAV9 (Adeno-associated virus), complementing the in vitro findings. In addition, increased SUMO2-mediated sumoylation in human cardiomyopathy patients and in mouse models of cardiomyopathy were observed. To decipher the underlying mechanism, we generated a sumoylation-deficient SUMO2 mutant (ΔGG). Surprisingly, ΔGG replicated Cn-NFAT-activation and the prohypertrophic effects of native SUMO2, both in vitro and in vivo, suggesting a sumoylation-independent mechanism. Finally, we discerned a direct interaction between SUMO2 and CnA, which promotes CnA nuclear localization. In conclusion, we identified SUMO2 as a novel activator of Cn-NFAT signaling in cardiomyocytes. In broader terms, these findings reveal an unexpected role for SUMO2 in cardiac hypertrophy and cardiomyopathy, which may open the possibility for therapeutic manipulation of this pathway.


Assuntos
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Cardiomegalia/etiologia , Cardiomegalia/patologia , Crescimento Celular , Linhagem Celular , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Miócitos Cardíacos/patologia , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/deficiência , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação
12.
Cardiovasc Res ; 112(1): 491-501, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27496868

RESUMO

AIMS: Elevated levels of inositol 1,4,5-trisphosphate (IP3) in adult cardiac myocytes are typically associated with the development of cardiac hypertrophy, arrhythmias, and heart failure. IP3 enhances intracellular Ca(2+ )release via IP3 receptors (IP3Rs) located at the sarcoplasmic reticulum (SR). We aimed to determine whether IP3-induced Ca(2+ )release affects mitochondrial function and determine the underlying mechanisms. METHODS AND RESULTS: We compared the effects of IP3Rs- and ryanodine receptors (RyRs)-mediated cytosolic Ca(2+ )elevation achieved by endothelin-1 (ET-1) and isoproterenol (ISO) stimulation, respectively, on mitochondrial Ca(2+ )uptake and adenosine triphosphate (ATP) generation. Both ET-1 and isoproterenol induced an increase in mitochondrial Ca(2+ )(Ca(2 +) m) but only ET-1 led to an increase in ATP concentration. ET-1-induced effects were prevented by cell treatment with the IP3 antagonist 2-aminoethoxydiphenyl borate and absent in myocytes from transgenic mice expressing an IP3 chelating protein (IP3 sponge). Furthermore, ET-1-induced mitochondrial Ca(2+) uptake was insensitive to the mitochondrial Ca(2+ )uniporter inhibitor Ru360, however was attenuated by RyRs type 1 inhibitor dantrolene. Using real-time polymerase chain reaction, we detected the presence of all three isoforms of IP3Rs and RyRs in murine ventricular myocytes with a dominant presence of type 2 isoform for both receptors. CONCLUSIONS: Stimulation of IP3Rs with ET-1 induces Ca(2+ )release from the SR which is tunnelled to mitochondria via mitochondrial RyR leading to stimulation of mitochondrial ATP production.


Assuntos
Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Estimulação Elétrica , Endotelina-1/farmacologia , Genótipo , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Receptores de Inositol 1,4,5-Trifosfato/genética , Isoproterenol/farmacologia , Potencial da Membrana Mitocondrial , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/efeitos dos fármacos , Fatores de Tempo
13.
Hypertension ; 67(5): 1000-5, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27045032

RESUMO

Chronic thromboembolic pulmonary hypertension (CTEPH) is an entity of PH that not only limits patients quality of life but also causes significant morbidity and mortality. The treatment of choice is pulmonary endarterectomy. However numerous patients do not qualify for pulmonary endarterectomy or present with residual vasculopathy post pulmonary endarterectomy and require specific vasodilator treatment. Currently, there is no available specific small animal model of CTEPH that could serve as tool to identify targetable molecular pathways and to test new treatment options. Thus, we generated and standardized a rat model that not only resembles functional and histological features of CTEPH but also emulates thrombi fibrosis. The pulmonary embolism protocol consisted of 3 sequential tail vein injections of fibrinogen/collagen-covered polystyrene microspheres combined with thrombin and administered to 10-week-old male Wistar rats. After the third embolism, rats developed characteristic features of CTEPH including elevated right ventricular systolic pressure, right ventricular cardiomyocyte hypertrophy, pulmonary artery remodeling, increased serum brain natriuretic peptide levels, thrombi fibrosis, and formation of pulmonary cellular-fibrotic lesions. The current animal model seems suitable for detailed study of CTEPH pathophysiology and permits preclinical testing of new pharmacological therapies against CTEPH.


Assuntos
Endarterectomia/métodos , Hipertensão Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Embolia Pulmonar/cirurgia , Animais , Biópsia por Agulha , Doença Crônica , Modelos Animais de Doenças , Endarterectomia/mortalidade , Hipertensão Pulmonar/patologia , Imuno-Histoquímica , Masculino , Circulação Pulmonar/fisiologia , Embolia Pulmonar/mortalidade , Embolia Pulmonar/patologia , Distribuição Aleatória , Ratos , Ratos Wistar , Medição de Risco , Taxa de Sobrevida , Resultado do Tratamento , Remodelação Vascular/fisiologia
14.
Circ Cardiovasc Genet ; 8(6): 752-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26499333

RESUMO

BACKGROUND: E193, a heterozygous truncating mutation in the human transcription cofactor Eyes absent 4 (Eya4), causes hearing impairment followed by dilative cardiomyopathy. METHODS AND RESULTS: In this study, we first show Eya4 and E193 alter the expression of p27(kip1) in vitro, suggesting Eya4 is a negative regulator of p27. Next, we generated transgenic mice with cardiac-specific overexpression of Eya4 or E193. Luciferase and chromatin immunoprecipitation assays confirmed Eya4 and E193 bind and regulate p27 expression in a contradictory manner. Activity and phosphorylation status of the downstream molecules casein kinase-2α and histone deacetylase 2 were significantly elevated in Eya4- but significantly reduced in E193-overexpressing animals compared with wild-type littermates. Magnetic resonance imaging and hemodynamic analysis indicate Eya4-overexpression results in an age-dependent development of hypertrophy already under baseline conditions with no obvious functional effects, whereas E193 animals develop onset of dilative cardiomyopathy as seen in human E193 patients. Both cardiac phenotypes were aggravated on pressure overload. Finally, we identified a new heterozygous truncating Eya4 mutation, E215, which leads to similar clinical features of disease and a stable myocardial expression of the mutant protein as seen with E193. CONCLUSIONS: Our results implicate Eya4/Six1 regulates normal cardiac function via p27/casein kinase-2α/histone deacetylase 2 and indicate that mutations within this transcriptional complex and signaling cascade lead to the development of cardiomyopathy.


Assuntos
Sequência de Bases , Cardiomegalia/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/biossíntese , Deleção de Sequência , Transativadores/metabolismo , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Transativadores/genética
15.
Magn Reson Med ; 74(6): 1705-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25446550

RESUMO

PURPOSE: A method for the quantification of perfusion in murine myocardium is demonstrated. The method allows for the reconstruction of perfusion maps on arbitrary time points in the heart cycle while addressing problems that arise due to the irregular heart beat of mice. METHODS: A flow-sensitive alternating inversion recovery arterial spin labeling method using an untriggered FLASH-read out with random sampling is used. Look-Locker conditions are strictly maintained. No dummy pulses or mechanism to reduce deviation from Look-Locker conditions are needed. Electrocardiogram and respiratory data are recorded for retrospective gating and triggering. A model-based technique is used to reconstruct missing k-space data to cope with the undersampling inherent in retrospectively gated methods. Acquisition and reconstruction were validated numerically and in phantom measurements before in vivo experimentation. RESULTS: Quantitative perfusion maps were acquired within a single slice measurement time of 11 min. Perfusion values are in good accordance to literature values. Myocardial infarction could be clearly visualized and results were confirmed with histological results. CONCLUSION: The proposed method is capable of producing quantitative perfusion maps on arbitrary positions in the heart cycle within a short measurement time. The method is robust against irregular breathing patterns and heart rate changes and can be implemented on all scanners.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Angiografia por Ressonância Magnética/métodos , Modelos Cardiovasculares , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Imagem de Perfusão do Miocárdio/métodos , Animais , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Feminino , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Camundongos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade
16.
Clin Res Cardiol ; 103(1): 1-10, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23989652

RESUMO

Chagas disease and its causative agent Trypanosoma cruzi are endemic in almost all countries in South and Middle America. Currently, there are more than 10 million affected people. It is the most common reason for heart failure and a frequent cause of intestinal problems in Latin America. The phenotype of the Chagas cardiomyopathy is varying. Dilative cardiomyopathy, often accompanied by an apical aneurysm is the most common finding in the end stage heart failure, but rhythm disorders like conduction blocks, ventricular or supraventricular forms of tachycardia or repolarization changes occur as well, mainly in the early stages. Migration of infected people leads to a distribution from the endemic countries to North America and Europe. Although more than 500,000 people of Latin American origin are currently living in Europe, Chagas disease is not considered as a public health problem, yet. Cases of transmission via blood donation, organ transplantation or from mother-to-child are reported for several European countries but there is no database for Germany. Current epidemiological data are mostly available from regional surveys from other countries or are extrapolated. Hence, there is a large variation in the estimated numbers on the incidence of Chagas. Robust and reliable data are lacking. This review gives an overview on the currently available data and calls for a German Chagas surveillance.


Assuntos
Cardiomiopatia Chagásica/epidemiologia , Doenças Endêmicas , Trypanosoma cruzi/patogenicidade , Cardiomiopatia Chagásica/diagnóstico , Cardiomiopatia Chagásica/transmissão , Emigrantes e Imigrantes , Emigração e Imigração , Europa (Continente)/epidemiologia , Humanos , Incidência , Vigilância da População , Prognóstico , Fatores de Risco , Fatores de Tempo
17.
PLoS One ; 8(8): e68275, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990872

RESUMO

BACKGROUND: Surgical procedures in small animal models of heart disease might evoke alterations in cardiac morphology and function. The aim of this study was to reveal and quantify such potential artificial early or long term effects in vivo, which might account for a significant bias in basic cardiovascular research, and, therefore, could potentially question the meaning of respective studies. METHODS: Female Wistar rats (n = 6 per group) were matched for weight and assorted for sham left coronary artery ligation or control. Cardiac morphology and function was then investigated in vivo by cine magnetic resonance imaging at 7 Tesla 1 and 8 weeks after the surgical procedure. The time course of metabolic and inflammatory blood parameters was determined in addition. RESULTS: Compared to healthy controls, rats after sham surgery showed a lower body weight both 1 week (267.5±10.6 vs. 317.0±11.3 g, n<0.05) and 8 weeks (317.0±21.1 vs. 358.7±22.4 g, n<0.05) after the intervention. Left and right ventricular morphology and function were not different in absolute measures in both groups 1 week after surgery. However, there was a confined difference in several cardiac parameters normalized to the body weight (bw), such as myocardial mass (2.19±0.30/0.83±0.13 vs. 1.85±0.22/0.70±0.07 mg left/right per g bw, p<0.05), or enddiastolic ventricular volume (1.31±0.36/1.21±0.31 vs. 1.14±0.20/1.07±0.17 µl left/right per g bw, p<0.05). Vice versa, after 8 weeks, cardiac masses, volumes, and output showed a trend for lower values in sham operated rats compared to controls in absolute measures (782.2±57.2/260.2±33.2 vs. 805.9±84.8/310.4±48.5 mg, p<0.05 for left/right ventricular mass), but not normalized to body weight. Matching these findings, blood testing revealed only minor inflammatory but prolonged metabolic changes after surgery not related to cardiac disease. CONCLUSION: Cardio-thoracic surgical procedures in experimental myocardial infarction cause distinct alterations upon the global integrity of the organism, which in the long term also induce circumscribed repercussions on cardiac morphology and function. This impact has to be considered when analyzing data from respective animal studies and transferring these findings to conditions in patients.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Cardiopatias/cirurgia , Coração/fisiopatologia , Imageamento por Ressonância Magnética , Animais , Peso Corporal , Modelos Animais de Doenças , Eletrocardiografia , Feminino , Ventrículos do Coração/fisiopatologia , Inflamação , Imagem Cinética por Ressonância Magnética/métodos , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Wistar
18.
Clin Res Cardiol ; 100(12): 1087-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21789513

RESUMO

Two sons of a consanguineous marriage developed biventricular cardiomyopathy. One boy died of severe heart failure at the age of 6 years, the other was transplanted because of severe heart failure at the age of 10 years. In addition, focal palmoplantar keratoderma and woolly hair were apparent in both boys. As similar phenotypes have been described in Naxos disease and Carvajal syndrome, respectively, the genes for plakoglobin (JUP) and desmoplakin (DSP) were screened for mutations using direct genomic sequencing. A novel homozygous 2 bp deletion was identified in an alternatively spliced region of DSP. The deletion 5208_5209delAG led to a frameshift downstream of amino acid 1,736 with a premature truncation of the predominant cardiac isoform DSP-1. This novel homozygous truncating mutation in the isoform-1 specific region of the DSP C-terminus caused Carvajal syndrome comprising severe early-onset heart failure with features of non-compaction cardiomyopathy, woolly hair and an acantholytic form of palmoplantar keratoderma in our patient. Congenital hair abnormality and manifestation of the cutaneous phenotype in toddler age can help to identify children at risk for cardiac death.


Assuntos
Cardiomiopatias/genética , Desmoplaquinas/genética , Mutação da Fase de Leitura , Doenças do Cabelo/genética , Miocárdio Ventricular não Compactado Isolado/genética , Ceratodermia Palmar e Plantar/genética , Deleção de Sequência , Idade de Início , Sequência de Bases , Cardiomiopatias/diagnóstico , Cardiomiopatia Dilatada , Criança , Pré-Escolar , Análise Mutacional de DNA , Evolução Fatal , Predisposição Genética para Doença , Doenças do Cabelo/diagnóstico , Insuficiência Cardíaca/genética , Homozigoto , Humanos , Miocárdio Ventricular não Compactado Isolado/diagnóstico , Ceratodermia Palmar e Plantar/diagnóstico , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Índice de Gravidade de Doença
19.
Transplantation ; 91(6): 597-604, 2011 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-21228752

RESUMO

BACKGROUND: Inhibition of calcineurin (CnA) activity by cyclosporine A (CsA) is the mainstay in immunosuppressive therapy. CsA inhibits the phosphatase activity of the cytosolic phosphatase CnA and, therefore, prevents the dephosphorylation and subsequently nuclear translocation of the transcription factor nuclear factor of activated T cells (NFAT). However, CsA has multiple other targets within the cell and is, therefore, not specific. We developed a new approach to inhibit CnA/NFAT signaling. This synthetic peptide prevented CnA nuclear translocation in vitro. The purpose of this study was to demonstrate that this novel approach could potentially inhibit T-cell function in vitro and in vivo. METHODS: T-cell activation (Jurkat T cells, naïve rat T cells, and peripheral human T cells) was assessed by protein synthesis, interleukin (IL)-2 promoter activity, and IL-2 levels after T-cell activation. Immunohistological stainings for CnA were performed to investigate nuclear localization of CnA. The immunosuppressive effects in vivo of the synthetic peptide were investigated in rats with heterotopic transplanted hearts. RESULTS: The nuclear localization signal peptide significantly decreased alloantigen-specific T-lymphocyte proliferation, IL-2 promoter activity, and IL-2 production (338% ± 27% vs. 149% ± 11%, n=8, P<0.05) in cultured T cells by inhibition of CnA nuclear translocation. The synthetic peptide also significantly decreased the number of graft infiltrating CD8 T lymphocytes. Moreover, treatment with the synthetic inhibitory inhibited acute graft rejection (5 ± 0.6 days vs. 12 ± 2 days, n=10, P<0.05). CONCLUSIONS: Inhibition of nuclear translocation of CnA is a novel approach to inhibit the activation of the CnA/NFAT signaling cascade. Further studies have to demonstrate the long-term use of this principle in vivo.


Assuntos
Inibidores de Calcineurina , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/imunologia , Imunossupressores/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Sinais de Localização Nuclear/farmacologia , Linfócitos T/imunologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Doença Aguda , Sequência de Aminoácidos , Animais , Calcineurina/metabolismo , Humanos , Dados de Sequência Molecular , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/fisiologia , Ratos , Transdução de Sinais , beta Carioferinas/metabolismo
20.
Microbiology (Reading) ; 157(Pt 2): 373-386, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21030435

RESUMO

Most members of the phylum Firmicutes harbour a two-component system (TCS), LiaSR, which is involved in the response to cell envelope stress elicited most notably by inhibitors of the lipid II cycle. In all LiaSR systems studied in detail, LiaSR-mediated signal transduction has been shown to be negatively controlled by a membrane protein, LiaF, encoded upstream of liaSR. In this study we have analysed the LiaSR orthologue of Listeria monocytogenes (LiaSR(Lm)). Whole-genome transcriptional profiling indicated that activation of LiaSR(Lm) results in a remodelling of the cell envelope via the massive upregulation of membrane-associated and extracytoplasmic proteins in the presence of inducing stimuli. As shown for other LiaSR TCSs, LiaSR(Lm) is activated by cell wall-active antibiotics. We demonstrate that the level of phosphorylated LiaR(Lm), which is required for the induction of the LiaSR(Lm) regulon, is controlled by the interplay between the histidine kinase and phosphatase activities of the bifunctional sensor protein LiaS(Lm). Our data suggest that the phosphatase activity of LiaS(Lm) is stimulated by LiaF(Lm) in the absence of cell envelope stress.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Listeria monocytogenes/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Histidina Quinase , Listeria monocytogenes/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Proteínas Quinases/genética , RNA Bacteriano/genética , Regulon , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA