Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Food Res Int ; 173(Pt 2): 113467, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803789

RESUMO

Kefir is fermented traditionally with kefir grains, but commercial kefir production often relies on fermentation with planktonic cultures. Kefir has been associated with many health benefits, however, the utilization of kefir grains to facilitate large industrial production of kefir is challenging and makes to difficult to ensure consistent product quality and consistency. Notably, the microbial composition of kefir fermentations has been shown to impact kefir associated health benefits. This study aimed to compare volatile compounds, organic acids, and sugar composition of kefir produced through a traditional grain fermentation and through a reconstituted kefir consortium fermentation. Additionally, the impact of two key microbial communities on metabolite production in kefir was assessed using two modified versions of the consortium, with either yeasts or lactobacilli removed. We hypothesized that the complete kefir consortium would closely resemble traditional kefir, while the consortia without yeasts or lactobacilli would differ significantly from both traditional kefir and the complete consortium fermentation. Kefir fermentations were examined after 12 and 18 h using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) to identify volatile compounds and high performance liquid chromatography (HPLC) to identify organic acid and sugar composition. The traditional kefir differed significantly from the kefir consortium fermentation with the traditional kefir having 15-20 log2(fold change) higher levels of esters and the consortium fermented kefir having between 1 and 3 log2(fold change) higher organic acids including lactate and acetate. The use of a version of kefir consortium that lacked lactobacilli resulted in between 2 and 20 log2(fold change) lower levels of organic acids, ethanol, and butanoic acid ethyl ester, while the absence of yeast from the consortium resulted in minimal change. In summary, the kefir consortium fermentation is significantly different from traditional grain fermented kefir with respect to the profile of metabolites present, and seems to be driven by lactobacilli, as evidenced by the significant decrease in multiple metabolites when the lactobacilli were removed from the fermentation and minimal differences observed upon the removal of yeast.


Assuntos
Kefir , Saccharomyces cerevisiae , Lactobacillus/metabolismo , Etanol/metabolismo , Açúcares/metabolismo
3.
Food Res Int ; 173(Pt 2): 113471, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803795

RESUMO

One of diabetic characteristics is the postprandial hyperglycemia. Inhibiting glucose uptake may be beneficial for controlling postprandial blood glucose levels and regulating the glucose metabolism Peanut skin procyanidins (PSP) have shown a potential for lowering blood glucose; however, the underlying mechanism through which PSP regulate glucose metabolism remains unknown. In the current study, we investigated the effect of PSP on intestinal glucose transporters and serum metabolites using a mouse model of diabetic mice. Results showed that PSP improved glucose tolerance and systemic insulin sensitivity, which coincided with decreased expression of sodium-glucose cotransporter 1 and glucose transporter 2 in the intestinal epithelium induced by an activation of the phospholipase C ß2/protein kinase C signaling pathway. Moreover, untargeted metabolomic analysis of serum samples revealed that PSP altered arachidonic acid, sphingolipid, glycerophospholipid, bile acids, and arginine metabolic pathways. The study provides new insight into the anti-diabetic mechanism of PSP and a basis for further research.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Proantocianidinas , Animais , Glicemia/metabolismo , Arachis , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Proteínas Facilitadoras de Transporte de Glucose , Proantocianidinas/farmacologia , Proantocianidinas/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo
5.
Appl Environ Microbiol ; 89(11): e0097723, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37902410

RESUMO

IMPORTANCE: This work provides evidence that early-life fungal community composition, or host genetics, influences long-term mycobiome composition. In addition, this work provides the first comparison of the feral pig mycobiome to the mycobiome of intensively raised pigs.


Assuntos
Micobioma , Animais , Suínos , Longevidade , Animais Selvagens , Sus scrofa , Fezes/microbiologia
6.
CJC Open ; 5(10): 760-769, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876886

RESUMO

Background: Preclinical and observational studies suggest that the gut microbiome plays a role in the pathogenesis of heart failure (HF); the gut microbiome may be modified by fermentable dietary fibre (FDF). The Need for Fiber Addition in Symptomatic Heart Failure (FEAST-HF) trial evaluated feasibility of recruitment and supplementation with FDF in HF and whether FDF (acacia), compared to control, reduced the level of N-terminal pro-b-type natriuretic peptide (NT-proBNP) and growth stimulation expressed gene 2 (ST2), and produced changes in the gut microbiome. Methods: Participants were randomly allocated 1:1:1 to either of the intervention arms (5 g/d or 10 g/d acacia) or to the control arm (10 g/d microcrystalline cellulose (MCC; nonfermentable active control). Adherence and tolerance were assessed, and clinical events were monitored for safety. All outcomes (NT-proBNP, ST2, New York Heart Association class, Kansas City Cardiomyopathy Questionnaire scores, 6-minute walk test score, gut microbiome) were measured at baseline, and at 6 and 12 weeks. Results: Between September 13, 2018 and December 16, 2021, 51 patients were randomly allocated to either MCC (n = 18), acacia 5 g daily (n = 13), or acacia 10 g daily (n = 18). No differences occurred between either dose of acacia and MCC in NT-proBNP level, ST2, New York Heart Association class, or questionnaire scores over 12 weeks. Dietary treatment arms had a negligible impact on microbial communities. No safety, tolerability, or adherence issues were observed. Conclusions: Dietary supplementation with acacia gum was both safe and well tolerated in ambulatory patients with HF; however, it did not change NT-proBNP level, ST2, or the composition of the gut microbiome.ClinicalTrials.gov: NCT03409926.


Contexte: Des études précliniques et observationnelles donnent à penser que le microbiome intestinal joue un rôle dans la pathogenèse de l'insuffisance cardiaque (IC). Or, ce microbiome pourrait être modifié par la consommation de fibres alimentaires fermentescibles (FAF). L'essai pilote contrôlé avec répartition aléatoire FEAST-HF (pour The Need forFiberAddition inSymptomaticHeartFailure) visait à évaluer la possibilité d'administrer un supplément de FAF (l'acacia) et à déterminer si celui-ci entraîne une réduction du taux du propeptide natriurétique de type B N-terminal (NT-proBNP) et du récepteur ST2 (growth stimulation expressed gene 2) ou une modification du microbiome intestinal comparativement au placebo. Méthodologie: Les participants ont été répartis de façon aléatoire selon un rapport 1:1:1 dans l'un des groupes d'intervention (recevant 5 g/jour ou 10 g/jour d'acacia) ou dans le groupe témoin (recevant 10 g/jour de cellulose microcristalline [CMC], une fibre de référence non fermentescible). La tolérance et l'observance du traitement ont été évaluées, et les événements cliniques ont été surveillés pour évaluer l'innocuité. Tous les indicateurs (NT-proBNP, ST2, classe d'IC selon l'échelle de la New York Heart Association, score au questionnaire de cardiomyopathie de Kansas City, score à un test de marche de 6 minutes et microbiome intestinal) ont été évalués au début de l'étude, à la semaine 6 et à la semaine 12. Résultats: Entre le 13 septembre 2018 et le 16 décembre 2021, 51 patients ont pris, après répartition aléatoire, de la CMC (n = 18), 5 g d'acacia par jour (n = 13) ou 10 g d'acacia par jour (n = 18). Aucune différence n'a été observée quant au taux de NT-proBNP ou de ST2, à la classe d'IC selon la New York Heart Association ou aux scores au questionnaire entre les groupes prenant l'une ou l'autre des doses d'acacia et le groupe prenant la CMC au cours d'une période de 12 semaines. L'effet sur la flore microbienne était négligeable dans les groupes de traitement alimentaire. Par ailleurs, aucun problème lié à l'innocuité, à la tolérabilité ou à l'observance du traitement n'a été observé. Conclusions: Les suppléments alimentaires d'acacia (gomme arabique) sont sûrs et bien tolérés; toutefois, ces suppléments n'ont pas entraîné de changement dans les taux de NT-proBNP ou de ST2, ni dans la composition du microbiome intestinal.ClinicalTrials.gov : NCT03409926.

7.
Microbiol Spectr ; : e0235223, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37754552

RESUMO

Intensive broiler production practices are structured to prevent the introduction and spread of pathogens; however, they can potentially minimize the exposure of broilers to beneficial commensal bacteria. In this study, we used 16S rRNA amplicon sequencing to characterize the cecal microbiota of 35-day-old broilers from 22 independent commercial farms rearing broilers under intensive (IPS) or extensive production systems (EPS). We aimed to determine which bacteria are normal inhabitants of the broiler ceca and which bacteria might be missing from broilers in IPS. In addition, we generated a collection of 410 bacterial isolates, including 87 different species, to be used as a resource to further explore the effects of selected isolates on bird physiology and to elucidate the role of individual species within the cecal microbial community. Our results indicated significant differences in the microbiota of broilers between systems: the microbiota of broilers from EPS was dominated by Bacteroidetes {55.2% ± 8.9 [mean ± standard deviation (SD)]}, whereas Firmicutes dominated the microbiota of broilers from IPS (61.7% ± 14.4, mean ± SD). Bacterial taxa found to be core in the EPS microbiota, including Olsenella, Alistipes, Bacteroides, Barnesiella, Parabacteroides, Megamonas, and Parasutterella, were shown to be infrequent or absent from the IPS microbiota, and the EPS microbiota presented higher phylogenetic diversity and greater predicted functional potential than that of broilers in IPS. The bacteria shown to be depleted in broilers from IPS should be further investigated for their effects on bird physiology and potential application as next-generation probiotics. IMPORTANCE Production practices in intensive farming systems significantly reduce the introduction and spread of pathogens; however, they may potentially minimize the exposure of animals to beneficial commensal microorganisms. In this study, we identified core bacteria from the cecal microbiota of broilers raised in extensive production systems that are missing or reduced in birds from intensive systems, including Olsenella, Alistipes, Bacteroides, Barnesiella, Parabacteroides, Megamonas, and Parasutterella. Furthermore, the cecal microbiota of broilers from extensive systems showed higher diversity and greater functional potential than that of broilers from intensive systems. In addition, a collection of bacterial isolates containing 87 different species was generated from the current study, and this important resource can be used to further explore the role of selected commensal bacteria on the microbial community and bird physiology.

8.
PLoS One ; 18(7): e0289214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37506070

RESUMO

Inclusion of additive blends is a common dietary strategy to manage post-weaning diarrhea and performance in piglets. However, there is limited mechanistic data on how these additives improve outcomes during this period. To evaluate the effects of Presan FX (MCOA) on the intestinal microbiota and metabolome, diets with or without 0.2% MCOA were compared. Pigs fed MCOA showed improved whole-body metabolism 7 days post-weaning, with decreased (P < 0.05) creatine, creatinine and ß-hydroxybutyrate. Alterations in bile-associated metabolites and cholic acid were also observed at the same time-point (P < 0.05), suggesting MCOA increased bile acid production and secretion. Increased cholic acid was accompanied by increased tryptophan metabolites including indole-3-propionic acid (IPA) in systemic circulation (P = 0.004). An accompanying tendency toward increased Lactobacillus sp. in the small intestine was observed (P = 0.05). Many lactobacilli have bile acid tolerance mechanisms and contribute to production of IPA, suggesting increased bile acid production resulted in increased abundance of lactobacilli capable of tryptophan fermentation. Tryptophan metabolism is associated with the mature pig microbiota and many tryptophan metabolites such as IPA are considered beneficial to gut barrier function. In conclusion, MCOA may help maintain tissue metabolism and aid in microbiota re-assembly through bile acid production and secretion.


Assuntos
Butiratos , Ácidos Graxos , Suínos , Animais , Ácidos Graxos/metabolismo , Triptofano/farmacologia , Lactobacillus/metabolismo , Compostos Orgânicos , Fenóis , Ácidos e Sais Biliares , Ácido Cólico , Ração Animal/análise , Suplementos Nutricionais/análise
9.
FEMS Microbiol Ecol ; 99(7)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37349964

RESUMO

Fecal microbiota transplantation (FMT) is an emerging technique for modulating the pig microbiota, however, donor variability is one of the major reasons for inconsistent outcomes across studies. Cultured microbial communities may address some limitations of FMT; however, no study has tested cultured microbial communities as inocula in pigs. This pilot study compared the effects of microbiota transplants derived from sow feces to cultured mixed microbial community (MMC) following weaning. Control, FMT4X, and MMC4X were applied four times, while treatment FMT1X was administered once (n = 12/group). On postnatal day 48, microbial composition was modestly altered in pigs receiving FMT in comparison with Control (Adonis, P = .003), mainly attributed to reduced inter-animal variations in pigs receiving FMT4X (Betadispersion, P = .018). Pigs receiving FMT or MMC had consistently enriched ASVs assigned to genera Dialister and Alloprevotella. Microbial transplantation increased propionate production in the cecum. MMC4X piglets showed a trend of higher acetate and isoleucine compared to Control. A consistent enrichment of metabolites from amino acid metabolism in pigs that received microbial transplantation coincided with enhanced aminoacyl-tRNA biosynthesis pathway. No differences were observed among treatment groups for body weight or cytokine/chemokine profiles. Overall, FMT and MMC exerted similar effects on gut microbiota composition and metabolite production.


Assuntos
Microbioma Gastrointestinal , Microbiota , Suínos , Animais , Feminino , Transplante de Microbiota Fecal , Desmame , Projetos Piloto , Fezes , Metaboloma
10.
Appl Physiol Nutr Metab ; 48(9): 668-677, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224566

RESUMO

Kefir has long been associated with health benefits; however, recent evidence suggests that these benefits are dependent on the specific microbial composition of the kefir consumed. This study aimed to compare how consumption of a commercial kefir without traditional kefir organisms and a pitched kefir containing traditional organisms affected plasma lipid levels, glucose homeostasis, and markers of endothelial function and inflammation in males with elevated LDL cholesterol. We utilized a crossover design in n = 21 participants consisting of two treatments of 4 weeks each in random order separated by a 4-week washout. Participants received either commercial kefir or pitched kefir containing traditional kefir organisms for each treatment period. Participants consumed 2 servings of kefir (350 g) per day. Plasma lipid profile, glucose, insulin, markers of endothelial function, and inflammation were measured in the fasting state before and after each treatment period. Differences within each treatment period and comparison of treatment delta values were performed using paired t tests and Wilcoxon signed-rank test, respectively. When compared to baseline, pitched kefir consumption reduced LDL-C, ICAM-1, and VCAM-1, while commercial kefir consumption increased TNF-α. Pitched kefir consumption resulted in greater reductions in IL-8, CRP, VCAM-1, and TNF-α when compared to commercial kefir consumption. These findings provide strong evidence that microbial composition is an important factor in the metabolic health benefits associated with kefir consumption. They also provide support for larger studies examining these to assess whether traditional kefir organisms are necessary to confer health benefits to individuals at risk of developing cardiovascular disease.


Assuntos
Kefir , Masculino , Humanos , LDL-Colesterol , Projetos Piloto , Fator de Necrose Tumoral alfa , Molécula 1 de Adesão de Célula Vascular , Inflamação , Glucose
11.
Appl Environ Microbiol ; 89(5): e0027123, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098952

RESUMO

Broilers in intensive systems may lack commensal microbes that have coevolved with chickens in nature. This study evaluated the effects of microbial inocula and delivery methods applied to day-old chicks on the development of the cecal microbiota. Specifically, chicks were inoculated with cecal contents or microbial cultures, and the efficacies of three delivery methods (oral gavage, spraying inoculum into the bedding, and cohousing) were evaluated. Also, a competitive study evaluated the colonization ability of bacteria sourced from extensive or intensive poultry production systems. The microbiota of inoculated birds presented higher phylogenetic diversity values (PD) and higher relative abundance values of Bacteroidetes, compared with a control. Additionally, a reduction in the ileal villus height/crypt depth ratio and increased cecal IL-6, IL-10, propionate, and valerate concentrations were observed in birds that were inoculated with cecal contents. Across the experiments, the chicks in the control groups presented higher relative abundance values of Escherichia/Shigella than did the inoculated birds. Specific microbes from intensively or extensively raised chickens were able to colonize the ceca, and inocula from intensive production systems promoted higher relative abundance values of Escherichia/Shigella. We concluded that Alistipes, Bacteroides, Barnesiella, Mediterranea, Parabacteroides, Megamonas, and Phascolarctobacterium are effective colonizers of the broiler ceca. In addition, oral gavage, spray, and cohousing can be used as delivery methods for microbial transplantation, as indicated by their effects on the cecal microbiota, intestinal morphology, short-chain fatty acids concentration, and cytokine/chemokine levels. These findings will guide future research on the development of next-generation probiotics that are able to colonize and persist in the chicken intestinal tract after a single exposure. IMPORTANCE The strict biosecurity procedures employed in the poultry industry may inadvertently hinder the transmission of beneficial commensal bacteria that chickens would encounter in natural environments. This research aims at identifying bacteria that can colonize and persist in the chicken gut after a single exposure. We evaluated different microbial inocula that were obtained from healthy adult chicken donors as well as three delivery methods for their effects on microbiota composition and bird physiology. In addition, we conducted a competitive assay to test the colonization abilities of bacteria sourced from intensively versus extensively raised chickens. Our results indicated that some bacteria are consistently increased in birds that are exposed to microbial inoculations. These bacteria can be isolated and employed in future research on the development of next-generation probiotics that contain species that are highly adapted to the chicken gut.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Galinhas/microbiologia , Microbioma Gastrointestinal/fisiologia , Filogenia , Mucosa Intestinal , Ceco/microbiologia , Ração Animal/análise , Dieta/veterinária
12.
Adv Nutr ; 14(4): 840-857, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031749

RESUMO

The gut microbiome has a profound influence on host physiology, including energy metabolism, which is the process by which energy from nutrients is transformed into other forms of energy to be used by the body. However, mechanistic evidence for how the microbiome influences energy metabolism is derived from animal models. In this narrative review, we included human studies investigating the relationship between gut microbiome and energy metabolism -i.e., energy expenditure in humans and energy harvest by the gut microbiome. Studies have found no consistent gut microbiome patterns associated with energy metabolism, and most interventions were not effective in modulating the gut microbiome to influence energy metabolism. To date, cause-and-effect relationships and mechanistic evidence on the impact of the gut microbiome on energy expenditure have not been established in humans. Future longitudinal observational studies and randomized controlled trials utilizing robust methodologies and advanced statistical analysis are needed. Such knowledge would potentially inform the design of therapeutic avenues and specific dietary recommendations to improve energy metabolism through gut microbiome modulation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Humanos , Microbioma Gastrointestinal/fisiologia , Dieta , Nutrientes , Metabolismo Energético/fisiologia
13.
Foods ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766201

RESUMO

Spontaneous fermentations that do not rely on backslopping or industrial starter cultures were especially important to the early development of society and are still practiced around the world today. While current literature on spontaneous fermentations is observational and descriptive, it is important to understand the underlying mechanism of microbial community assembly and how this correlates with changes observed in microbial succession, composition, interaction, and metabolite production. Spontaneous food and beverage fermentations are home to autochthonous bacteria and fungi that are naturally inoculated from raw materials, environment, and equipment. This review discusses the factors that play an important role in microbial community assembly, particularly focusing on commonly reported yeasts and bacteria isolated from spontaneously fermenting food and beverages, and how this affects the fermentation dynamics. A wide range of studies have been conducted in spontaneously fermented foods that highlight some of the mechanisms that are involved in microbial interactions, niche adaptation, and lifestyle of these microorganisms. Moreover, we will also highlight how controlled culture experiments provide greater insight into understanding microbial interactions, a modest attempt in decoding the complexity of spontaneous fermentations. Further research using specific in vitro microbial models to understand the role of core microbiota are needed to fill the knowledge gap that currently exists in understanding how the phenotypic and genotypic expression of these microorganisms aid in their successful adaptation and shape fermentation outcomes. Furthermore, there is still a vast opportunity to understand strain level implications on community assembly. Translating these findings will also help in improving other fermentation systems to help gain more control over the fermentation process and maintain consistent and superior product quality.

14.
Microbiome ; 11(1): 21, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737826

RESUMO

BACKGROUND: Vitamin B12 supplements typically contain doses that far exceed the recommended daily amount, and high exposures are generally considered safe. Competitive and syntrophic interactions for B12 exist between microbes in the gut. Yet, to what extent excessive levels contribute to the activities of the gut microbiota remains unclear. The objective of this study was to evaluate the effect of B12 on microbial ecology using a B12 supplemented mouse model with Citrobacter rodentium, a mouse-specific pathogen. Mice were fed a standard chow diet and received either water or water supplemented with B12 (cyanocobalamin: ~120 µg/day), which equates to approximately 25 mg in humans. Infection severity was determined by body weight, pathogen load, and histopathologic scoring. Host biomarkers of inflammation were assessed in the colon before and after the pathogen challenge. RESULTS: Cyanocobalamin supplementation enhanced pathogen colonization at day 1 (P < 0.05) and day 3 (P < 0.01) postinfection. The impact of B12 on gut microbial communities, although minor, was distinct and attributed to the changes in the Lachnospiraceae populations and reduced alpha diversity. Cyanocobalamin treatment disrupted the activity of the low-abundance community members of the gut microbiota. It enhanced the amount of interleukin-12 p40 subunit protein (IL12/23p40; P < 0.001) and interleukin-17a (IL-17A; P < 0.05) in the colon of naïve mice. This immune phenotype was microbe dependent, and the response varied based on the baseline microbiota. The cecal metatranscriptome revealed that excessive cyanocobalamin decreased the expression of glucose utilizing genes by C. rodentium, a metabolic attribute previously associated with pathogen virulence. CONCLUSIONS: Oral vitamin B12 supplementation promoted C. rodentium colonization in mice by altering the activities of the Lachnospiraceae populations in the gut. A lower abundance of select Lachnospiraceae species correlated to higher p40 subunit levels, while the detection of Parasutterella exacerbated inflammatory markers in the colon of naïve mice. The B12-induced change in gut ecology enhanced the ability of C. rodentium colonization by impacting key microbe-host interactions that help with pathogen exclusion. This research provides insight into how B12 impacts the gut microbiota and highlights potential consequences of disrupting microbial B12 competition/sharing through over-supplementation. Video Abstract.


Assuntos
Citrobacter rodentium , Vitamina B 12 , Humanos , Animais , Camundongos , Vitamina B 12/farmacologia , Interações entre Hospedeiro e Microrganismos , Colo , Suplementos Nutricionais
15.
Appl Environ Microbiol ; 89(3): e0162822, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36809030

RESUMO

Changes in the gut microbiota have been linked to metabolic endotoxemia as a contributing mechanism in the development of obesity and type 2 diabetes. Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. The enrichment of the family Enterobacteriaceae, largely represented by Escherichia coli, induced by a high-fat diet (HFD) has been correlated with impaired glucose homeostasis; however, whether the enrichment of Enterobacteriaceae in a complex gut microbial community in response to an HFD contributes to metabolic disease has not been established. To investigate whether the expansion of Enterobacteriaceae amplifies HFD-induced metabolic disease, a tractable mouse model with the presence or absence of a commensal E. coli strain was established. With an HFD treatment, but not a standard-chow diet, the presence of E. coli significantly increased body weight and adiposity and induced impaired glucose tolerance. In addition, E. coli colonization led to increased inflammation in liver and adipose and intestinal tissue under an HFD regimen. With a modest effect on gut microbial composition, E. coli colonization resulted in significant changes in the predicted functional potential of microbial communities. The results demonstrated the role of commensal E. coli in glucose homeostasis and energy metabolism in response to an HFD, indicating contributions of commensal bacteria to the pathogenesis of obesity and type 2 diabetes. The findings of this research identified a targetable subset of the microbiota in the treatment of people with metabolic inflammation. IMPORTANCE Although identifying specific microbial taxa associated with obesity and type 2 diabetes remains difficult, certain bacteria may play an important role in initiating metabolic inflammation during disease development. Here, we used a mouse model distinguishable by the presence or absence of a commensal Escherichia coli strain in combination with a high-fat diet challenge to investigate the impact of E. coli on host metabolic outcomes. This is the first study to show that the addition of a single bacterial species to an animal already colonized with a complex microbial community can increase severity of metabolic outcomes. This study is of interest to a wide group of researchers because it provides compelling evidence to target the gut microbiota for therapeutic purposes by which personalized medicines can be made for treating metabolic inflammation. The study also provides an explanation for variability in studies investigating host metabolic outcomes and immune response to diet interventions.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Camundongos , Escherichia coli/fisiologia , Dieta Hiperlipídica/efeitos adversos , Obesidade/microbiologia , Bactérias , Inflamação , Enterobacteriaceae , Modelos Animais de Doenças , Glucose/metabolismo , Camundongos Endogâmicos C57BL
16.
Microbiol Spectr ; : e0361622, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719194

RESUMO

As important commensals in the chicken intestine, Bacteroides are essential complex carbohydrate degraders, and short-chain fatty acid (SCFA) producers that are highly adapted to the distal gut. Previous studies have shown large variation in Bacteroides abundance in young chickens. However, limited information is available regarding how this variation affects the gut microbiome and host immunity. To investigate how elevated or depleted Bacteroides levels affect gut microbial functional capacity and impact host response, we sampled 7-day-old broiler chickens from 14 commercial production flocks. Week-old broiler chickens were screened and birds with low Bacteroides (LB) and high Bacteroides (HB) abundance were identified via 16S rRNA gene amplicon sequencing and quantitative PCR (qPCR) assays. Cecal microbial functionality and SCFA concentration of chickens with distinct cecal Bacteroides abundance were profiled by shotgun metagenomic sequencing and gas chromatography, respectively. The intestinal immune responses of LB and HB chickens were assessed via reverse transcription qPCR. Results showed that the gut microbiota of the LB group had increased abundance of lactic acid bacteria pyruvate fermentation pathway, whereas complex polysaccharide degradation and SCFA production pathways were enriched in the HB group (P < 0.05), which was supported by increased SCFA concentrations in the ceca of HB chickens (P < 0.05). HB chickens also showed decreased expression of interleukin-1ß and increased expression of interleukin-10 and tight-junction protein claudin-1 (P < 0.05). Overall, the results indicated that elevated Bacteroides may benefit the 7-day broiler gut and that further work should be done to confirm the causal role of Bacteroides in the observed positive outcomes. IMPORTANCE To date, limited information is available comparing distinct Bacteroides compositions in the chicken gut microbial communities, particularly in the context of microbial functional capacities and host responses. This study showed that possessing a microbiome with elevated Bacteroides in early life may confer beneficial effects to the chicken host, particularly in improving SCFA production and gut health. This study is among the first metagenomic studies focusing on the early life chicken gut microbiota structure, microbial functionality, and host immune responses. We believe that it will offer insights to future studies on broiler gut microbial population and their effects on host health.

17.
Eur J Nutr ; 62(2): 699-711, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36197467

RESUMO

PURPOSE: To understand the effects of consuming high-fat and low-fat dairy products on postprandial cardiometabolic risk factors and intestinal immune function, we used an established low birthweight (LBW) swine model of diet-induced insulin resistance. METHODS: LBW piglets were randomized to consume one of the 3 experimental high fat diets and were fed for a total of 7 weeks: (1) Control high fat (LBW-CHF), (2) CHF diet supplemented with 3 servings of high-fat dairy (LBW-HFDairy) and (3) CHF diet supplemented with 3 servings of low-fat dairy (LBW-LFDairy). As comparison groups, normal birthweight (NBW) piglets were fed a CHF (NBW-CHF) or standard pig grower diet (NBW-Chow). At 11 weeks of age, all piglets underwent an established modified oral glucose and fat tolerance test. At 12 weeks of age, piglets were euthanized and ex vivo cytokine production by cells isolated from mesenteric lymph node (MLN) stimulated with mitogens was assessed. RESULTS: Dairy consumption did not modulate postprandial plasma lipid, inflammatory markers and glucose concentrations. A lower production of IL-2 and TNF-α after pokeweed mitogen (PWM) stimulation was observed in LBW-CHF vs NBW-Chow (P < 0.05), suggesting impaired MLN T cell function. While feeding high-fat dairy had minimal effects, feeding low-fat dairy significantly improved the production of IL-2 and TNF-α after PWM stimulation (P < 0.05). CONCLUSIONS: Irrespective of fat content, dairy had a neutral effect on postprandial cardiometabolic risk factors. Low-fat dairy products improved intestinal T cell function to a greater extent than high-fat dairy in this swine model of obesity and insulin resistance.


Assuntos
Resistência à Insulina , Animais , Peso ao Nascer , Dieta com Restrição de Gorduras , Glucose , Imunidade , Resistência à Insulina/fisiologia , Interleucina-2 , Suínos , Fator de Necrose Tumoral alfa
18.
Front Microbiol ; 13: 1056526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504827

RESUMO

Introduction: Kefir consumption can have many metabolic health benefits, including, in the case of specific kefirs, improvements in plasma and liver lipid profiles. Our group has previously shown that these health benefits are dependent on the microbial composition of the kefir fermentation, and that a pitched kefir (PK1) containing specific traditional microbes can recapitulate the health benefits of a traditional kefir. In this study we investigated how different preparations of kefir impact cholesterol and lipid metabolism and circulating markers of cardiovascular disease risk and determine if freeze-drying impacts health benefits relative to past studies. Materials and methods: Eight-week-old male and female C57Bl/6 mice were fed a high fat diet (40% kcal from fat) supplemented with one of 3 freeze-dried kefir preparations (whole kefir, cell-free kefir, or heat-treated kefir) for 8 weeks prior to analysis of plasma and liver lipid profiles, circulating cardiovascular disease (CVD) biomarkers, cecal microbiome composition, and cecal short-chain fatty acid levels. These groups of mice were compared to others that were fed a control low-fat diet, control high fat diet or high fat diet supplemented with milk, respectively. Results: All kefir preparations lowered plasma cholesterol in both male and female mice, while only whole kefir lowered liver cholesterol and triglycerides. Plasma vascular cell adhesion molecule 1 (VCAM-1) was lowered by both whole kefir and heat-treated kefir in male mice but not females, while c-reactive protein (CRP) was unchanged across all high fat diet fed groups in males and females. Conclusion: These results indicate that some of the metabolic benefits of consumption of this kefir do not require whole kefir while also indicating that there are multiple compounds or components responsible for the different benefits observed.

19.
Appl Environ Microbiol ; 88(24): e0159322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448784

RESUMO

Early-life antibiotic exposure is associated with diverse long-term adverse health outcomes. Despite the immunomodulatory effects of gastrointestinal fungi, the impact of antibiotics on the fungal community (mycobiome) has received little attention. The objectives of this study were to determine the impact of commonly prescribed infant antibiotic treatments on the microbial loads and structures of bacterial and fungal communities in the gastrointestinal tract. Thirty-two piglets were divided into four treatment groups: amoxicillin (A), amoxicillin-clavulanic acid (AC), gentamicin-ampicillin (GA), and flavored placebo (P). Antibiotics were administered orally starting on postnatal day (PND) 1 until PND 8, except for GA, which was given on PNDs 5 and 6 intramuscularly. Fecal swabs were collected from piglets on PNDs 3 and 8, and sow feces were collected 1 day after farrowing. The impacts of antibiotics on bacterial and fungal communities were assessed by sequencing the 16S rRNA and the internal transcribed spacer 2 (ITS2) rRNA genes, respectively, and quantitative PCR was performed to determine total bacterial and fungal loads. Antibiotics did not alter the α-diversity (P = 0.834) or ß-diversity (P = 0.565) of fungal communities on PND 8. AC increased the ratio of total fungal/total bacterial loads on PND 8 (P = 0.027). There was strong clustering of piglets by litter on PND 8 (P < 0.001), which corresponded to significant differences in the sow mycobiome, especially the presence of Kazachstania slooffiae. In summary, we observed a strong litter effect and showed that the maternal mycobiome is essential for shaping the piglet mycobiome in early life. IMPORTANCE This work provides evidence that although the fungal community composition is not altered by antibiotics, the overall fungal load increases with the administration of amoxicillin-clavulanic acid. Additionally, we show that the maternal fungal community is important in establishing the fungal community in piglets.


Assuntos
Microbioma Gastrointestinal , Micobioma , Animais , Feminino , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Fungos , RNA Ribossômico 16S/genética , Suínos
20.
Microb Pathog ; 173(Pt A): 105873, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371065

RESUMO

Brachyspira hyodysenteriae, an etiologic agent of swine dysentery (SD), is known for causing colitis. Although some aspects of colonic defenses during infection have been described previously, a more comprehensive picture of the host and microbiota interaction in clinically affected animals is required. This study aimed to characterize multiple aspects of colonic innate defenses and microbiome factors in B. hyodysenteriae-infected pigs that accompany clinical presentation of hemorrhagic diarrhea. We examined colonic mucus barrier modifications, leukocyte infiltration, cathelicidin expression, as well as microbiome composition. We showed that B. hyodysenteriae infection caused microscopic hemorrhagic colitis with abundant neutrophil infiltration in the colonic lamina propria and lumen, with minor macrophage infiltration. Mucus hypersecretion with abundant sialylated mucus in the colon, as well as mucosal colonization by [Acetivibrio] ethanolgignens, Lachnospiraceae, and Campylobacter were pathognomonic of B. hyodysenteriae infection. These findings demonstrate that B. hyodysenteriae produces clinical disease through multiple effects on host defenses, involving alterations of mucosal innate immunity and microbiota. Given that B. hyodysenteriae is increasingly resistant to antimicrobials, this understanding of SD pathogenesis may lead to future development of non-antibiotic and anti-inflammatory alternative therapeutics.


Assuntos
Colite , Disenteria , Infecções por Bactérias Gram-Negativas , Microbiota , Infecções por Spirochaetales , Doenças dos Suínos , Suínos , Animais , Doenças dos Suínos/patologia , Disenteria/veterinária , Disenteria/patologia , Imunidade Inata , Infecções por Bactérias Gram-Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA