Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 10(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602584

RESUMO

Coordinating chromosome duplication and segregation with cell division is clearly critical for bacterial species with one chromosome. The precise choreography required is even more complex in species with more than one chromosome. The alpha subgroup of bacteria contains not only one of the best-studied bacterial species, Caulobacter crescentus, but also several species with more than one chromosome. Rhodobacter sphaeroides is an alphaproteobacterium with two chromosomes, but, unlike C. crescentus, it divides symmetrically rather than buds and lacks the complex CtrA-dependent control mechanism. By examining the Ori and Ter regions of both chromosomes and associated ParA and ParB proteins relative to cell division proteins FtsZ and MipZ, we have identified a different pattern of chromosome segregation and cell division. The pattern of chromosome duplication and segregation resembles that of Vibrio cholerae, not that of Agrobacterium tumefaciens, with duplication of the origin and terminus regions of chromosome 2 controlled by chromosome 1. Key proteins are localized to different sites compared to C. crescentus OriC1 and ParB1 are localized to the old pole, while MipZ and FtsZ localize to the new pole. Movement of ParB1 to the new pole following chromosome duplication releases FtsZ, which forms a ring at midcell, but, unlike reports for other species, MipZ monomers do not form a gradient but oscillate between poles, with the nucleotide-bound monomer and the dimer localizing to midcell. MipZ dimers form a single ring (with a smaller diameter) close to the FtsZ ring at midcell and constrict with the FtsZ ring. Overproduction of the dimer form results in filamentation, suggesting that MipZ dimers are regulating FtsZ activity and thus septation. This is an unexpected role for MipZ and provides a new model for the integration of chromosome segregation and cell division.IMPORTANCE Cell division has to be coordinated with chromosome segregation to ensure the stable inheritance of genetic information. We investigated this coordination in the multichromosome bacterium Rhodobacter sphaeroides By examining the origin and terminus regions of the two chromosomes, the ParA-like ATPase MipZ and FtsZ, we showed that chromosome 1 appears to be the "master" chromosome connecting DNA segregation and cell division, with MipZ being critical for coordination. MipZ shows an unexpected localization pattern, with MipZ monomers interacting with ParB of the chromosome 1 at the cell poles whereas MipZ dimers colocalize with FtsZ at midcell during constriction, both forming dynamic rings. These data suggest that MipZ has roles in R. sphaeroides in both controlling septation and coordinating chromosome segregation with cell division.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Segregação de Cromossomos , Cromossomos Bacterianos , Rhodobacter sphaeroides/citologia , Rhodobacter sphaeroides/fisiologia , Microscopia Intravital , Transporte Proteico
2.
Mol Microbiol ; 101(2): 333-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27059541

RESUMO

Chromosome segregation is an essential process of cell multiplication. In prokaryotes, segregation starts with the newly replicated sister origins of replication, oriCs, which move apart to defined positions in the cell. We have developed a genetic screen to identify mutants defective in placement of oriC during spore development in the Gram-positive bacterium Bacillus subtilis. In addition to the previously identified proteins Soj and DivIVA, our screen identified several new factors involved in polar recruitment of oriC: a reported regulator of competence ComN, and the regulators of division site selection MinD and MinJ. Previous work implicated Soj as an important regulator of oriC positioning in the cell. Our results suggest a model in which the DivIVA-interacting proteins ComN and MinJ recruit MinD to the cell pole, and that these proteins work upstream of Soj to enable oriC placement. We show that these proteins form a polar complex, which acts in parallel with but distinct from the sporulation-specific RacA pathway of oriC placement, and also functions during vegetative growth. Our study further shows that MinD has two distinct cell cycle roles, in cell division and chromosome segregation, and highlights that cell probably use multiple parallel mechanisms to ensure accurate chromosome segregation.


Assuntos
Bacillus subtilis/genética , Polaridade Celular/genética , Segregação de Cromossomos/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Polaridade Celular/fisiologia , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Origem de Replicação/genética , Origem de Replicação/fisiologia , Esporos Bacterianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA