Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625719

RESUMO

Genome sequencing and assembly of the photosynthetic picoeukaryotic Picochlorum sp. SENEW3 revealed a compact genome with a reduced gene set, few repetitive sequences, and an organized Rabl-like chromatin structure. Hi-C chromosome conformation capture revealed evidence of possible chromosomal translocations, as well as putative centromere locations. Maintenance of a relatively few selenoproteins, as compared to similarly sized marine picoprasinophytes Mamiellales, and broad halotolerance compared to others in Trebouxiophyceae, suggests evolutionary adaptation to variable salinity environments. Such adaptation may have driven size and genome minimization and have been enabled by the retention of a high number of membrane transporters. Identification of required pathway genes for both CAM and C4 photosynthetic carbon fixation, known to exist in the marine mamiellale pico-prasinophytes and seaweed Ulva, but few other chlorophyte species, further highlights the unique adaptations of this robust alga. This high-quality assembly provides a significant advance in the resources available for genomic investigations of this and other photosynthetic picoeukaryotes.


Assuntos
Genômica , Fotossíntese , Mapeamento Cromossômico , Fotossíntese/genética , Cromossomos , Cromatina/genética
2.
Biochem Mol Biol Educ ; 51(3): 276-285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866633

RESUMO

With the global increase of infections caused by antibiotic-resistant bacterial strains, there is an urgent need for new methods of tackling the issue. Genomic analysis of bacterial strains can help to understand their virulence and antibiotic resistance profile. Bioinformatic skills are in great demand across the biological sciences. We designed a workshop that allows university students to learn the process of genome assembly using command-line tools within a virtual machine on a Linux operating system. We use Illumina and Nanopore short and long-read raw sequences to reveal the advantages and disadvantages of short, long, and hybrid assembly methods. The workshop teaches how to assess read and assembly quality, perform genome annotation, and analyze pathogenicity, antibiotic and phage resistance. The workshop is intended for a five-week teaching period and is concluded by a student poster presentation assessment.


Assuntos
Biologia Computacional , Genômica , Humanos , Análise de Sequência de DNA/métodos , Genômica/métodos , Genoma Bacteriano
3.
Sci Rep ; 12(1): 18452, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323734

RESUMO

Two molecular cytology approaches, (i) time-gated immunoluminescence assay (TGiA) and (ii) Raman-active immunolabeling assay (RiA), have been developed to detect prostate cancer (PCa) cells in urine from five prostate cancer patients. For TGiA, PCa cells stained by a biocompatible europium chelate antibody-conjugated probe were quantitated by automated time-gated microscopy (OSAM). For RiA, PCa cells labeled by antibody-conjugated Raman probe were detected by Raman spectrometer. TGiA and RiA were first optimized by the detection of PCa cultured cells (DU145) spiked into control urine, with TGiA-OSAM showing single-cell PCa detection sensitivity, while RiA had a limit of detection of 4-10 cells/mL. Blinded analysis of each patient urine sample, using MIL-38 antibody specific for PCa cells, was performed using both assays in parallel with control urine. Both assays detected very low abundance PCa cells in patient urine (3-20 PCa cells per mL by TGiA, 4-13 cells/mL by RiA). The normalized mean of the detected PCa cells per 1 ml of urine was plotted against the clinical data including prostate specific antigen (PSA) level and Clinical Risk Assessment for each patient. Both cell detection assays showed correlation with PSA in the high risk patients but aligned with the Clinical Assessment rather than with PSA levels of the low/intermediate risk patients. Despite the limited available urine samples of PCa patients, the data presented in this proof-of-principle work is promising for the development of highly sensitive diagnostic urine tests for PCa.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais/urina , Próstata , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/urina , Pelve
4.
Microb Biotechnol ; 15(7): 1946-1965, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35338590

RESUMO

Hydrogen is a clean alternative to fossil fuels. It has applications for electricity generation and transportation and is used for the manufacturing of ammonia and steel. However, today, H2 is almost exclusively produced from coal and natural gas. As such, methods to produce H2 that do not use fossil fuels need to be developed and adopted. The biological manufacturing of H2 may be one promising solution as this process is clean and renewable. Hydrogen is produced biologically via enzymes called hydrogenases. There are three classes of hydrogenases namely [FeFe], [NiFe] and [Fe] hydrogenases. The [FeFe] hydrogenase HydA1 from the model unicellular algae Chlamydomonas reinhardtii has been studied extensively and belongs to the A1 subclass of [FeFe] hydrogenases that have the highest turnover frequencies amongst hydrogenases (21,000 ± 12,000 H2 s-1 for CaHydA from Clostridium acetobutyliticum). Yet to date, limitations in C. reinhardtii H2 production pathways have hampered commercial scale implementation, in part due to O2 sensitivity of hydrogenases and competing metabolic pathways, resulting in low H2 production efficiency. Here, we describe key processes in the biogenesis of HydA1 and H2 production pathways in C. reinhardtii. We also summarize recent advancements of algal H2 production using synthetic biology and describe valuable tools such as high-throughput screening (HTS) assays to accelerate the process of engineering algae for commercial biological H2 production.


Assuntos
Chlamydomonas reinhardtii , Hidrogenase , Chlamydomonas reinhardtii/metabolismo , Combustíveis Fósseis , Hidrogênio/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Biologia Sintética
5.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33975960

RESUMO

Biosyntheses of chlorophyll and heme in oxygenic phototrophs share a common trunk pathway that diverges with insertion of magnesium or iron into the last common intermediate, protoporphyrin IX. Since both tetrapyrroles are pro-oxidants, it is essential that their metabolism is tightly regulated. Here, we establish that heme-derived linear tetrapyrroles (bilins) function to stimulate the enzymatic activity of magnesium chelatase (MgCh) via their interaction with GENOMES UNCOUPLED 4 (GUN4) in the model green alga Chlamydomonas reinhardtii A key tetrapyrrole-binding component of MgCh found in all oxygenic photosynthetic species, CrGUN4, also stabilizes the bilin-dependent accumulation of protoporphyrin IX-binding CrCHLH1 subunit of MgCh in light-grown C. reinhardtii cells by preventing its photooxidative inactivation. Exogenous application of biliverdin IXα reverses the loss of CrCHLH1 in the bilin-deficient heme oxygenase (hmox1) mutant, but not in the gun4 mutant. We propose that these dual regulatory roles of GUN4:bilin complexes are responsible for the retention of bilin biosynthesis in all photosynthetic eukaryotes, which sustains chlorophyll biosynthesis in an illuminated oxic environment.


Assuntos
Pigmentos Biliares/fisiologia , Chlamydomonas reinhardtii/metabolismo , Clorofila/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Cianobactérias/metabolismo , Heme Oxigenase (Desciclizante) , Peptídeos e Proteínas de Sinalização Intracelular/química , Liases/metabolismo , Protoporfirinas/química
6.
Microb Ecol ; 80(1): 34-46, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31828390

RESUMO

Diverse microbial communities living in subsurface coal seams are responsible for important geochemical processes including the movement of carbon between the geosphere, biosphere and atmosphere. Microbial conversion of the organic matter in coal to methane involves a complex assemblage of bacteria and archaea working in syntrophic relationships. Despite the importance and value of this microbial process, very few of the microbial taxa have defined metabolic or ecological roles in these environments. Additionally, the genomic features mediating life in this chemically reduced, energy poor, deep subsurface environment are not well characterised. Here we describe the isolation and genomic and catabolic characterisation of three alphaproteobacterial Stappia indica species from three coal basins across Australia. S. indica genomes from coal seams were compared with those from closely related S. indica isolated from diverse surface waters, revealing a coal seam-specific suite of genes associated with life in the subsurface. These genes are linked to processes including viral defence, secondary metabolite production, polyamine metabolism, polypeptide uptake membrane transporters and putative energy neutral pressure-dependent CO2 fixation. This indicates that subsurface Stappia have diverse metabolisms for biomass recycling and pressure-dependent CO2 fixation and require a suite of defensive and competitive strategies relative to their surface-dwelling relatives.


Assuntos
Ciclo do Carbono , Água Doce/microbiologia , Genoma Bacteriano , Sedimentos Geológicos/microbiologia , Rhodobacteraceae/fisiologia , Biomassa , Carvão Mineral , Mineração , New South Wales , Queensland , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Especificidade da Espécie
7.
Artigo em Inglês | MEDLINE | ID: mdl-31850336

RESUMO

The coffee industry produces over 10 billion kg beans per year and generates high amounts of different waste products. Spent coffee grounds (SCG) are an industrially underutilized waste resource, which is rich in the polysaccharide galactomannan, a polysaccharide consisting of a mannose backbone with galactose side groups. Here, we present a cell-free reaction cascade for the conversion of mannose, the most abundant sugar in SCG, into L-lactic acid. The enzymatic conversion is based on a so far unknown oxidative mannose metabolism from Thermoplasma acidophilum and uses a previously characterized mannonate dehydratase to convert mannose into lactic acid via 4 enzymatic reactions. In comparison to known in vivo metabolisms the bioconversion is free of phosphorylated intermediates and cofactors. Assessment of enzymes, adjustment of enzyme loadings, substrate and cofactor concentrations, and buffer ionic strength allowed the identification of crucial reaction parameters and bottlenecks. Moreover, reactions with isotope labeled mannose enabled the monitoring of pathway intermediates and revealed a reverse flux in the conversion process. Finally, 4.4 ± 0.1 mM lactic acid was produced from 14.57 ± 0.7 mM SCG-derived mannose. While the conversion efficiency of the process can be further improved by enzyme engineering, the reaction demonstrates the first multi-enzyme cascade for the bioconversion of SCG.

8.
BMC Genomics ; 20(1): 207, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866821

RESUMO

BACKGROUND: Halomicronema hongdechloris was the first cyanobacterium to be identified that produces chlorophyll (Chl) f. It contains Chl a and uses phycobiliproteins as its major light-harvesting components under white light conditions. However, under far-red light conditions H. hongdechloris produces Chl f and red-shifted phycobiliprotein complexes to absorb and use far-red light. In this study, we report the genomic sequence of H. hongdechloris and use quantitative proteomic approaches to confirm the deduced metabolic pathways as well as metabolic and photosynthetic changes in response to different photo-autotrophic conditions. RESULTS: The whole genome of H. hongdechloris was sequenced using three different technologies and assembled into a single circular scaffold with a genome size of 5,577,845 bp. The assembled genome has 54.6% GC content and encodes 5273 proteins covering 83.5% of the DNA sequence. Using Tandem Mass Tag labelling, the total proteome of H. hongdechloris grown under different light conditions was analyzed. A total of 1816 proteins were identified, with photosynthetic proteins accounting for 24% of the total mass spectral readings, of which 35% are phycobiliproteins. The proteomic data showed that essential cellular metabolic reactions remain unchanged under shifted light conditions. The largest differences in protein content between white and far-red light conditions reflect the changes to photosynthetic complexes, shifting from a standard phycobilisome and Chl a-based light harvesting system under white light, to modified, red-shifted phycobilisomes and Chl f-containing photosystems under far-red light conditions. CONCLUSION: We demonstrate that essential cellular metabolic reactions under different light conditions remain constant, including most of the enzymes in chlorophyll biosynthesis and photosynthetic carbon fixation. The changed light conditions cause significant changes in the make-up of photosynthetic protein complexes to improve photosynthetic light capture and reaction efficiencies. The integration of the global proteome with the genome sequence highlights that cyanobacterial adaptation strategies are focused on optimizing light capture and utilization, with minimal changes in other metabolic pathways. Our quantitative proteomic approach has enabled a deeper understanding of both the stability and the flexibility of cellular metabolic networks of H. hongdechloris in response to changes in its environment.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/crescimento & desenvolvimento , Proteômica/métodos , Sequenciamento Completo do Genoma/métodos , Adaptação Fisiológica , Proteínas de Bactérias/genética , Ciclo do Carbono , Clorofila/análogos & derivados , Clorofila/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Evolução Molecular , Tamanho do Genoma , Luz , Anotação de Sequência Molecular , Fotossíntese , Ficobiliproteínas/genética , Ficobiliproteínas/metabolismo , Filogenia , Espectrometria de Massas em Tandem
9.
Photosynth Res ; 140(1): 115-127, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30604202

RESUMO

Chlorophylls (Chls) are pigments involved in light capture and light reactions in photosynthesis. Chl a, Chl b, Chl d, and Chl f are characterized by unique absorbance maxima in the blue (Soret) and red (Qy) regions with Chl b, Chl d, and Chl f each possessing a single formyl group at a unique position. Relative to Chl a the Qy absorbance maximum of Chl b is blue-shifted while Chl d and Chl f are red-shifted with the shifts attributable to the relative positions of the formyl substitutions. Reduction of a formyl group of Chl b to form 7-hydroxymethyl Chl a, or oxidation of the vinyl group of Chl a into a formyl group to form Chl d was achieved using sodium borohydride (NaBH4) or ß-mercaptoethanol (BME/O2), respectively. During the consecutive reactions of Chl b and Chl f using a three-step procedure (1. NaBH4, 2. BME/O2, and 3. NaBH4) two new 7-hydroxymethyl Chl a species were prepared possessing the 3-formyl or 3-hydroxymethyl groups and three new 2-hydroxymethyl Chl a species possessing the 3-vinyl, 3-formyl, or 3-hydroxymethyl groups, respectively. Identification of the spectral properties of 2-hydroxymethyl Chl a may be biologically significant for deducing the latter stages of Chl f biosynthesis if the mechanism parallels Chl b biosynthesis. The spectral features and chromatographic properties of these modified Chls are important for identifying potential intermediates in the biosynthesis of Chls such as Chl f and Chl d and for identification of any new Chls in nature.


Assuntos
Clorofila/química , Spinacia oleracea/química , Boroidretos/química , Clorofila/análogos & derivados , Clorofila/isolamento & purificação , Clorofila A/química , Clorofila A/isolamento & purificação , Mercaptoetanol/química , Oxirredução , Fotossíntese , Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
J Biol Chem ; 292(47): 19279-19289, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28972142

RESUMO

Chlorophylls (Chls) are the most important cofactors for capturing solar energy to drive photosynthetic reactions. Five spectral types of Chls have been identified to date, with Chl f having the most red-shifted absorption maximum because of a C21-formyl group substitution of Chl f However, the biochemical provenance of this formyl group is unknown. Here, we used a stable isotope labeling technique (18O and 2H) to determine the origin of the C21-formyl group of Chl f and to verify whether Chl f is synthesized from Chl a in the cyanobacterial species Halomicronema hongdechloris. In the presence of either H218O or 18O2, the origin of oxygen atoms in the newly synthesized chlorophylls was investigated. The pigments were isolated with HPLC, followed by MS analysis. We found that the oxygen atom of the C21-formyl group originates from molecular oxygen and not from H2O. Moreover, we examined the kinetics of the labeling of Chl a and Chl f from H. hongdechloris grown in 50% D2O-seawater medium under different light conditions. When cells were shifted from white light D2O-seawater medium to far-red light H2O-seawater medium, the observed deuteration in Chl f indicated that Chl(ide) a is the precursor of Chl f Taken together, our results advance our understanding of the biosynthesis pathway of the chlorophylls and the formation of the formyl group in Chl f.


Assuntos
Clorofila/análogos & derivados , Cianobactérias/metabolismo , Oxigênio/metabolismo , Clorofila/isolamento & purificação , Clorofila/metabolismo , Marcação por Isótopo , Cinética , Luz , Fotossíntese
11.
Biochem J ; 474(12): 2095-2105, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487379

RESUMO

Magnesium chelatase (Mg-chelatase) inserts magnesium into protoporphyrin during the biosynthesis of chlorophyll and bacteriochlorophyll. Enzyme activity is reconstituted by forming two separate preactivated complexes consisting of a GUN4/ChlH/protoporphyrin IX substrate complex and a ChlI/ChlD enzyme 'motor' complex. Formation of the ChlI/ChlD complex in both Chlamydomonas reinhardtii and Oryza sativa is accompanied by phosphorylation of ChlD by ChlI, but the orthologous protein complex from Rhodobacter capsulatus, BchI/BchD, gives no detectable phosphorylation of BchD. Phosphorylation produces a 1-N-phospho-histidine within ChlD. Proteomic analysis indicates that phosphorylation occurs at a conserved His residue in the C-terminal integrin I domain of ChlD. Comparative analysis of the ChlD phosphorylation with enzyme activities of various ChlI/ChlD complexes correlates the phosphorylation by ChlI2 with stimulation of Mg-chelatase activity. Mutation of the H641 of CrChlD to E641 prevents both phosphorylation and stimulation of Mg-chelatase activity, confirming that phosphorylation at H641 stimulates Mg-chelatase. The properties of ChlI2 compared with ChlI1 of Chlamydomonas and with ChlI of Oryza, shows that ChlI2 has a regulatory role in Chlamydomonas.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Clorofila/biossíntese , Histidina Quinase/metabolismo , Liases/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Algas/agonistas , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência Conservada , Ativação Enzimática , Estabilidade Enzimática , Histidina/metabolismo , Histidina Quinase/química , Histidina Quinase/genética , Concentração de Íons de Hidrogênio , Liases/química , Liases/genética , Mutação , Radioisótopos de Fósforo , Fosforilação , Proteínas de Plantas/agonistas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteômica/métodos
12.
Sci Rep ; 6: 37533, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874051

RESUMO

Prostate cancer is one of the male killing diseases and early detection of prostate cancer is the key for better treatment and lower cost. However, the number of prostate cancer cells is low at the early stage, so it is very challenging to detect. In this study, we successfully designed and developed upconversion immune-nanohybrids (UINBs) with sustainable stability in a physiological environment, stable optical properties and highly specific targeting capability for early-stage prostate cancer cell detection. The developed UINBs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and luminescence spectroscopy. The targeting function of the biotinylated antibody nanohybrids were confirmed by immunofluorescence assay and western blot analysis. The UINB system is able to specifically detect prostate cancer cells with stable and background-free luminescent signals for highly sensitive prostate cancer cell detection. This work demonstrates a versatile strategy to develop UCNPs based sustainably stable UINBs for sensitive diseased cell detection.


Assuntos
Rastreamento de Células/métodos , Nanopartículas/química , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Detecção Precoce de Câncer , Humanos , Medições Luminescentes , Masculino , Microscopia Eletrônica de Transmissão , Nanopartículas/uso terapêutico , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/fisiopatologia , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Anal Chem ; 88(19): 9564-9571, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27595303

RESUMO

We describe the application of a synthetically developed tetradentate ß-diketonate-europium chelate with high quantum yield (39%), for sensitive immunodetection of prostate cancer cells (DU145). MIL38 antibody, a mouse monoclonal antibody against Glypican 1, conjugated directly to the chelate via lysine residues, resulted in soluble (hydrophilic) and stable immunoconjugates. Indirect labeling of the antibody by a europium chelated secondary polyclonal antibody and a streptavidin/biotin pair was also performed. All of these bright luminescent conjugates were used to stain DU145 cells, a prostate cancer cell line, using time gated luminescence microscopy for imaging, and their performances were compared to conventional FITC labeling. For all prepared conjugates, the europium chelate in conjunction with a gated autosynchronous luminescence detector (GALD) completely suppressed the cellular autofluorescence background to allow capture of vivid, high contrast images of immune-stained cancer cells.


Assuntos
Complexos de Coordenação/farmacologia , Európio/química , Imunoconjugados/farmacologia , Técnicas Imunológicas/métodos , Substâncias Luminescentes/farmacologia , Neoplasias da Próstata/diagnóstico , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Glipicanas/imunologia , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Ligantes , Luminescência , Substâncias Luminescentes/síntese química , Masculino
14.
Sci Rep ; 6: 27547, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282102

RESUMO

Acaryochloris marina, a unicellular oxygenic photosynthetic cyanobacterium, has uniquely adapted to far-red light-enriched environments using red-shifted chlorophyll d. To understand red-light use in Acaryochloris, the genome of this cyanobacterium was searched for red/far-red light photoreceptors from the phytochrome family, resulting in identification of a putative bacteriophytochrome AM1_5894. AM1_5894 contains three standard domains of photosensory components as well as a putative C-terminal signal transduction component consisting of a histidine kinase and receiver domain. The photosensory domains of AM1_5894 autocatalytically assemble with biliverdin in a covalent fashion. This assembled AM1_5894 shows the typical photoreversible conversion of bacterial phytochromes with a ground-state red-light absorbing (Pr) form with λBV max[Pr] 705 nm, and a red-light inducible far-red light absorbing (Pfr) form with λBV max[Pfr] 758 nm. Surprisingly, AM1_5894 also autocatalytically assembles with phycocyanobilin, involving photoreversible conversion of λPCB max[Pr] 682 nm and λPCB max[Pfr] 734 nm, respectively. Our results suggest phycocyanobilin is also covalently bound to AM1_5894, while mutation of a cysteine residue (Cys11Ser) abolishes this covalent binding. The physiological function of AM1_5894 in cyanobacteria containing red-shifted chlorophylls is discussed.


Assuntos
Clorofila/genética , Cianobactérias/genética , Fotossíntese/genética , Fitocromo/genética , Clorofila/química , Cianobactérias/química , Cisteína/química , Cisteína/genética , Genoma Bacteriano/genética , Histidina Quinase/genética , Histidina Quinase/metabolismo , Luz , Fotorreceptores Microbianos/genética , Fotossíntese/efeitos da radiação , Fitocromo/química , Transdução de Sinais/efeitos da radiação
15.
J Biol Chem ; 291(17): 8978-84, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26969164

RESUMO

The genomes uncoupled 4 (GUN4) protein is a nuclear-encoded, chloroplast-localized, porphyrin-binding protein implicated in retrograde signaling between the chloroplast and nucleus, although its exact role in this process is still unclear. Functionally, it enhances Mg-chelatase activity in the chlorophyll biosynthesis pathway. Because GUN4 is present only in organisms that carry out oxygenic photosynthesis and because it binds protoporphyrin IX (PPIX) and Mg-PPIX, it has been suggested that it prevents production of light- and PPIX- or Mg-PPIX-dependent reactive oxygen species. A chld-1/GUN4 mutant with elevated PPIX has a light-dependent up-regulation of GUN4, implicating this protein in light-dependent sensing of PPIX, with the suggestion that GUN4 reduces PPIX-generated singlet oxygen, O2(a(1)Δg), and subsequent oxidative damage (Brzezowski, P., Schlicke, H., Richter, A., Dent, R. M., Niyogi, K. K., and Grimm, B. (2014) Plant J. 79, 285-298). In direct contrast, our results show that purified GUN4 and oxidatively damaged ChlH increase the rate of PPIX-generated singlet oxygen production in the light, by a factor of 5 and 10, respectively, when compared with PPIX alone. Additionally, the functional GUN4-PPIX-ChlH complex and ChlH-PPIX complexes generate O2(a(1)Δg) at a reduced rate when compared with GUN4-PPIX. As O2(a(1)Δg) is a potential plastid-to-nucleus signal, possibly through second messengers, light-dependent O2(a(1)Δg) generation by GUN4-PPIX is proposed to be part of a signal transduction pathway from the chloroplast to the nucleus. GUN4 thus senses the availability and flux of PPIX through the chlorophyll biosynthetic pathway and also modulates Mg-chelatase activity. The light-dependent O2(a(1)Δg) generation from GUN4-PPIX is thus proposed as the first step in retrograde signaling from the chloroplast to the nucleus.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Plantas/metabolismo , Protoporfirinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Plantas/genética
16.
Biochim Biophys Acta ; 1857(1): 107-114, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26514405

RESUMO

Phycobilisomes are the main light-harvesting protein complexes in cyanobacteria and some algae. It is commonly accepted that these complexes only absorb green and orange light, complementing chlorophyll absorbance. Here, we present a new phycobilisome derived complex that consists only of allophycocyanin core subunits, having red-shifted absorption peaks of 653 and 712 nm. These red-shifted phycobiliprotein complexes were isolated from the chlorophyll f-containing cyanobacterium, Halomicronema hongdechloris, grown under monochromatic 730 nm-wavelength (far-red) light. The 3D model obtained from single particle analysis reveals a double disk assembly of 120-145 Å with two α/ß allophycocyanin trimers fitting into the two separated disks. They are significantly smaller than typical phycobilisomes formed from allophycocyanin subunits and core-membrane linker proteins, which fit well with a reduced distance between thylakoid membranes observed from cells grown under far-red light. Spectral analysis of the dissociated and denatured phycobiliprotein complexes grown under both these light conditions shows that the same bilin chromophore, phycocyanobilin, is exclusively used. Our findings show that red-shifted phycobilisomes are required for assisting efficient far-red light harvesting. Their discovery provides new insights into the molecular mechanisms of light harvesting under extreme conditions for photosynthesis, as well as the strategies involved in flexible chromatic acclimation to diverse light conditions.


Assuntos
Clorofila/análogos & derivados , Cianobactérias/metabolismo , Ficobilissomas/fisiologia , Clorofila/fisiologia , Fotossíntese , Ficobilissomas/química
17.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 8): 1094-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249706

RESUMO

The genomes uncoupled 4 (GUN4) protein stimulates chlorophyll biosynthesis by increasing the activity of Mg-chelatase, the enzyme that inserts magnesium into protoporphyrin IX (PPIX) in the chlorophyll biosynthesis pathway. One of the roles of GUN4 is in binding PPIX and Mg-PPIX. In eukaryotes, GUN4 also participates in plastid-to-nucleus signalling, although the mechanism for this is unclear. Here, the first crystal structure of a eukaryotic GUN4, from Chlamydomonas reinhardtii, is presented. The structure is in broad agreement with those of previously solved cyanobacterial structures. Most interestingly, conformational divergence is restricted to several loops which cover the porphyrin-binding cleft. The conformational dynamics suggested by this ensemble of structures lend support to the understanding of how GUN4 binds PPIX or Mg-PPIX.


Assuntos
Proteínas de Algas/química , Chlamydomonas reinhardtii/química , Protoporfirinas/química , Proteínas Recombinantes de Fusão/química , Proteínas de Algas/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Chlamydomonas reinhardtii/genética , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência
18.
Sci Rep ; 4: 6069, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25119484

RESUMO

The chemical structural differences distinguishing chlorophylls in oxygenic photosynthetic organisms are either formyl substitution (chlorophyll b, d, and f) or the degree of unsaturation (8-vinyl chlorophyll a and b) of a side chain of the macrocycle compared with chlorophyll a. We conducted an investigation of the conversion of vinyl to formyl groups among naturally occurring chlorophylls. We demonstrated the in vitro oxidative cleavage of vinyl side groups to yield formyl groups through the aid of a thiol-containing compound in aqueous reaction mixture at room temperature. Heme is required as a catalyst in aqueous solution but is not required in methanolic reaction mixture. The conversion of vinyl- to formyl- groups is independent of their position on the macrocycle, as we observed oxidative cleavages of both 3-vinyl and 8-vinyl side chains to yield formyl groups. Three new chlorophyll derivatives were synthesised using 8-vinyl chlorophyll a as substrate: 8-vinyl chlorophyll d, [8-formyl]-chlorophyll a, and [3,8-diformyl]-chlorophyll a. The structural and spectral properties will provide a signature that may aid in identification of the novel chlorophyll derivatives in natural systems. The ease of conversion of vinyl- to formyl- in chlorophylls demonstrated here has implications regarding the biosynthetic mechanism of chlorophyll d in vivo.


Assuntos
Clorofila/química , Formiatos/química , Fotossíntese/fisiologia , Prochlorococcus/metabolismo , Compostos de Vinila/química , Catálise , Clorofila/análogos & derivados , Clorofila/biossíntese , Clorofila A , Heme/metabolismo , Mercaptoetanol/química , Protoporfirinas/metabolismo
19.
Protein Expr Purif ; 101: 61-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24931499

RESUMO

The ∼150kDa ChlH subunit of magnesium chelatase from Oryza sativa, Hordeum vulgare and Chlamydomonas reinhardtii have been heterologously expressed in Escherichiacoli. The active soluble protein is found as both a multimeric and a monomeric form. The multimeric ChlH appears to be oxidatively damaged but monomer production is favoured in growth conditions that are known to cause an oxidative stress response in E.coli. Inducing an oxidative stress response may be of general utility to improve the quality of proteins expressed in E. coli. The similar responses of ChlH's from the three different species suggest that oligomerization of oxidatively damaged ChlH may have a functional role in the chloroplast, possibly as a signal of oxidative stress or damage.


Assuntos
Escherichia coli/metabolismo , Liases/biossíntese , Liases/metabolismo , Estresse Oxidativo/fisiologia , Multimerização Proteica/fisiologia , Chlamydomonas reinhardtii/enzimologia , Regulação Bacteriana da Expressão Gênica , Hordeum/enzimologia , Liases/genética , Oryza/enzimologia , Oxirredução , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Biochem Biophys Res Commun ; 436(4): 595-600, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23751345

RESUMO

The hemoprotein indoleamine 2,3-dioxygenase-1 (IDO1) is the first and rate-limiting enzyme in mammalian tryptophan metabolism. Interest in IDO1 continues to grow, due to the ever expanding influence IDO1 plays in the immune response. This study examined the contribution of all individual cysteine residues towards the overall catalytic properties and stability of recombinant human IDO1 via mutagenesis studies using a range of biochemical and spectroscopic techniques, including in vitro kinetic assessment, secondary structure identification via circular dichroism spectroscopy and thermal stability assessment. Upon mutation of cysteine residues we observed changes in secondary structure (principally, shifting from α-helix/ß-sheet features to random coil structures) that produced out of plane heme torsion and puckering, changes to thermal stability (including gains in stability for one mutant protein) and differences in enzymatic activity (such as, increased ability to convert non-natural substrates, e.g.d-tryptophan) from wild type IDO1 enzyme.


Assuntos
Cisteína/genética , Heme/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Sítios de Ligação , Catálise , Estabilidade Enzimática , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA