Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Expert Rev Clin Immunol ; : 1-17, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533720

RESUMO

INTRODUCTION: Despite the success of immunotherapies for melanoma in recent years, there remains a significant proportion of patients who do not yet derive benefit from available treatments. Immunotherapies currently licensed for clinical use target the adaptive immune system, focussing on Tcell interactions and functions. However, the most prevalent immune cells within the tumor microenvironment (TME) of melanoma are macrophages, a diverse immune cell subset displaying high plasticity, to which no current therapies are yet directly targeted. Macrophages have been shown not only to activate the adaptive immune response, and enhance cancer cell killing, but, when influenced by factors within the TME of melanoma, these cells also promote melanoma tumorigenesis and metastasis. AREAS COVERED: We present a review of the most up-to-date literatureavailable on PubMed, focussing on studies from within the last 10 years. We also include data from ongoing and recent clinical trials targeting macrophages in melanoma listed on clinicaltrials.gov. EXPERT OPINION: Understanding the multifaceted role of macrophages in melanoma, including their interactions with immune and cancer cells, the influence of current therapies on macrophage phenotype and functions and how macrophages could be targeted with novel treatment approaches, are all critical for improving outcomes for patients with melanoma.

2.
Nat Commun ; 14(1): 3378, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291228

RESUMO

B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma.


Assuntos
Linfócitos B , Melanoma , Humanos , Melanoma/genética , Anticorpos , Imunidade Humoral , Autoantígenos/genética , Microambiente Tumoral
3.
Oncoimmunology ; 11(1): 2127284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211808

RESUMO

The application of monoclonal antibodies (mAbs) for the treatment of melanoma has significantly improved the clinical management of this malignancy over the last decade. Currently approved mAbs for melanoma enhance T cell effector immune responses by blocking immune checkpoint molecules PD-L1/PD-1 and CTLA-4. However, more than half of patients do not benefit from treatment. Targeting the prominent myeloid compartment within the tumor microenvironment, and in particular the ever-abundant tumor-associated macrophages (TAMs), may be a promising strategy to complement existing therapies and enhance treatment success. TAMs are a highly diverse and plastic subset of cells whose pro-tumor properties can support melanoma growth, angiogenesis and invasion. Understanding of their diversity, plasticity and multifaceted roles in cancer forms the basis for new promising TAM-centered treatment strategies. There are multiple mechanisms by which macrophages can be targeted with antibodies in a therapeutic setting, including by depletion, inhibition of specific pro-tumor properties, differential polarization to pro-inflammatory states and enhancement of antitumor immune functions. Here, we discuss TAMs in melanoma, their interactions with checkpoint inhibitor antibodies and emerging mAbs targeting different aspects of TAM biology and their potential to be translated to the clinic.


Assuntos
Antineoplásicos Imunológicos , Melanoma , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/uso terapêutico , Antígeno CTLA-4 , Humanos , Proteínas de Checkpoint Imunológico , Imunoterapia , Melanoma/tratamento farmacológico , Plásticos/uso terapêutico , Receptor de Morte Celular Programada 1/uso terapêutico , Neoplasias Cutâneas , Microambiente Tumoral , Macrófagos Associados a Tumor , Melanoma Maligno Cutâneo
4.
Oncoimmunology ; 11(1): 2104426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909944

RESUMO

B cells are emerging as key players of anti-tumor adaptive immune responses. We investigated regulatory and pro-inflammatory cytokine-expressing B cells in patients with melanoma by flow cytometric intracellular cytokine, CyTOF, transcriptomic, immunofluorescence, single-cell RNA-seq, and B:T cell co-culture analyses. We found enhanced circulating regulatory (TGF-ß+ and PD-L1+) and reduced pro-inflammatory TNF-α+ B cell populations in patients compared with healthy volunteers (HVs), including lower IFN-γ+:IL-4+ and higher TGF-ß+:TNF-α+ B cell ratios in patients. TGF-ß-expressing B cells in the melanoma tumor microenvironment assembled in clusters and interacted with T cells via lymphoid recruitment (SELL, CXCL13, CCL4, CD74) signals and with Tregs via CD47:SIRP-γ, and FOXP3-promoting Galectin-9:CD44. While reduced in tumors compared to blood, TNF-α-expressing B cells engaged in crosstalk with Tregs via TNF-α signaling and the ICOS/ICOSL axis. Patient-derived B cells promoted FOXP3+ Treg differentiation in a TGF-ß-dependent manner, while sustaining expression of IFN-γ and TNF-α by autologous T-helper cells and promoting T-helper cell proliferation ex vivo, an effect further enhanced with anti-PD-1 checkpoint blockade. Our findings reveal cytokine-expressing B cell compartments skewed toward regulatory phenotypes in patient circulation and melanoma lesions, intratumor spatial localization, and bidirectional crosstalk between B and T cell subsets with immunosuppressive attributes.


Assuntos
Linfócitos B Reguladores , Melanoma , Neoplasias Cutâneas , Linfócitos T Reguladores , Linfócitos B Reguladores/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
5.
Nat Commun ; 13(1): 3148, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672305

RESUMO

Checkpoint blockade with Pembrolizumab, has demonstrated durable clinical responses in advanced non-small cell lung cancer, however, treatment is offset by the development of high-grade immune related adverse events (irAEs) in some patients. Here, we show that in these patients a deficient Breg checkpoint fails to limit self-reactive T cell enhanced activity and auto-antibody formation enabled by PD-1/PD-L1 blockade, leading to severe auto-inflammatory sequelae. Principally a failure of IL-10 producing regulatory B cells as demonstrated through functional ex vivo assays and deep phenotyping mass cytometric analysis, is a major and significant finding in patients who develop high-grade irAEs when undergoing treatment with anti-PD1/PD-L1 checkpoint blockade. There is currently a lack of biomarkers to identify a priori those patients at greatest risk of developing severe auto-inflammatory syndrome. Pre-therapy B cell profiling could provide an important tool to identify lung cancer patients at high risk of developing severe irAEs on checkpoint blockade.


Assuntos
Linfócitos B Reguladores , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptor de Morte Celular Programada 1/genética
6.
Expert Rev Clin Immunol ; 18(4): 347-362, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35195495

RESUMO

INTRODUCTION: The treatment of cutaneous melanoma has been revolutionized by the development of small-molecule inhibitors targeting the MAPK pathway, including inhibitors of BRAF (BRAFi) and MEK (MEKi), and immune checkpoint blockade antibodies, occurring in tandem. Despite these advances, the 5-year survival rate for patients with advanced melanoma remains only around 50%. Although not designed to alter immune responses within the tumor microenvironment (TME), MAPK pathway inhibitors (MAPKi) exert a range of effects on the host immune compartment that may offer opportunities for therapeutic interventions. AREAS COVERED: We review the effects of MAPKi, especially BRAFi, on the TME, focusing on alterations in inflammatory cytokine secretion, recruitment of immune cells and their functions, both during response to BRAFi treatment and as resistance develops. We outline potential combinations of MAPKi with established and experimental treatments. EXPERT OPINION: MAPKi in combination or in sequence with established treatments such as checkpoint inhibitors, anti-angiogenic agents, or new therapies such as adoptive cell therapies, may augment their immunological effects, reverse tumor-associated immune suppression, and offer the prospect of longer-lived clinical responses. Refining therapeutic tools at our disposal and embracing 'old friends' in the melanoma treatment arsenal, alongside new target identification, may improve the chances of therapeutic success.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf , Neoplasias Cutâneas/tratamento farmacológico , Microambiente Tumoral
7.
Am J Dermatopathol ; 43(12): e197-e203, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231493

RESUMO

INTRODUCTION: Primary cutaneous marginal zone B-cell lymphoma (MZL) follows an indolent clinical course. Histopathologically, there is a polymorphous infiltrate that includes small lymphocyte-like and centrocyte-like B cells and plasma cells usually with a substantial T-cell fraction. Primary cutaneous CD4+ small/medium T-cell lymphoproliferative disorder, in which the signature cells have a follicular T-helper (TFH) phenotype and are admixed with numerous B cells. Thus, both present histologies of combined B-cell and T-cell infiltrates and represent differential diagnoses. The presence of TFH in MZL has yet to be elucidated. METHODS: Forty-one biopsies from 40 cases of MZL and 7 cases of lymphoid hyperplasia cutis (LCH) were stained with antibodies to follicular T-helper cells, including Bcl-6, PD-1, ICOS, and CD10, as part of their diagnostic workup, were reviewed, and the stained slides were evaluated semiquantitively. Five reactive lymph nodes were also evaluated as controls. RESULTS: All cases of MZL and LCH contained TFH, albeit usually in low proportions. There were repeated differences in levels of expression between TFH markers, with PD1 and Bcl-6 being the most prevalent. The pattern of involvement in MZL and LCH closely mirrored that observed in the reactive lymph nodes. CONCLUSION: MZL includes TFH cells, similar to reactive lymph nodes, and a complexity of cell types. This provides evidence of an organoid immune response challenging its simple categorization as a malignancy.


Assuntos
Linfoma de Zona Marginal Tipo Células B/imunologia , Linfoma de Zona Marginal Tipo Células B/patologia , Organoides/imunologia , Organoides/patologia , Células T Auxiliares Foliculares/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Am J Dermatopathol ; 43(12): e237-e240, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34086640

RESUMO

ABSTRACT: Primary extramedullary plasmacytoma is rare monoclonal proliferation of plasma cells, which arise in various nonosseous anatomic locations without detectable underlying systemic disease. Historically, cutaneous infiltrates rich in mature neoplastic plasma cells have fallen into one of the following categories, plasmacytoma, lymphoplasmacytic lymphoma, and marginal zone lymphoma, which included immunocytoma. Since 2005, each of these was subsumed under the marginal zone lymphoma umbrella, largely on the basis of acknowledged diagnostic difficulties in some of these cases. We describe 2 cases in which the cutaneous infiltrates consisted of a pure population of light chain-restricted mature plasma cells in the absence of any other evidence for a marginal zone proliferation, or evidence of extracutaneous involvement, including a paraprotein. We propose that primary cutaneous plasmacytoma is the accurate diagnosis and is consistent with wider nomenclature. The unusual observation of widespread Epstein-Barr virus expression in both tumors is also discussed.


Assuntos
Infecções por Vírus Epstein-Barr/patologia , Plasmocitoma/patologia , Plasmocitoma/virologia , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/virologia , Idoso de 80 Anos ou mais , Infecções por Vírus Epstein-Barr/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Plasmocitoma/classificação
9.
Eur J Immunol ; 51(3): 544-556, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450785

RESUMO

Cytotoxic T-lymphocyte associated protein-4 (CTLA-4) and the Programmed Death Receptor 1 (PD-1) are immune checkpoint molecules that are well-established targets of antibody immunotherapies for the management of malignant melanoma. The monoclonal antibodies, Ipilimumab, Pembrolizumab, and Nivolumab, designed to interfere with T cell inhibitory signals to activate immune responses against tumors, were originally approved as monotherapy. Treatment with a combination of immune checkpoint inhibitors may improve outcomes compared to monotherapy in certain patient groups and these clinical benefits may be derived from unique immune mechanisms of action. However, treatment with checkpoint inhibitor combinations also present significant clinical challenges and increased rates of immune-related adverse events. In this review, we discuss the potential mechanisms attributed to single and combined checkpoint inhibitor immunotherapies and clinical experience with their use.


Assuntos
Anticorpos Monoclonais/imunologia , Antígeno CTLA-4/imunologia , Inibidores de Checkpoint Imunológico/imunologia , Melanoma/imunologia , Melanoma/terapia , Receptor de Morte Celular Programada 1/imunologia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Animais , Humanos , Imunoterapia/métodos , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Melanoma Maligno Cutâneo
10.
Front Immunol ; 11: 622442, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33569063

RESUMO

The contributions of the humoral immune response to melanoma are now widely recognized, with reports of positive prognostic value ascribed to tumor-infiltrating B cells (TIL-B) and increasing evidence of B cells as key predictors of patient response to treatment. There are disparate views as to the pro- and anti-tumor roles of B cells. B cells appear to play an integral role in forming tumor-associated tertiary lymphoid structures (TLSs) which can further modulate T cell activation. Expressed antibodies may distinctly influence tumor regulation in the tumor microenvironment, with some isotypes associated with strong anti-tumor immune response and others with progressive disease. Recently, B cells have been evaluated in the context of cancer immunotherapy. Checkpoint inhibitors (CPIs), targeting T cell effector functions, have revolutionized the management of melanoma for many patients; however, there remains a need to accurately predict treatment responders. Increasing evidence suggests that B cells may not be simple bystanders to CPI immunotherapy. Mature and differentiated B cell phenotypes are key positive correlates of CPI response. Recent evidence also points to an enrichment in activatory B cell phenotypes, and the contribution of B cells to TLS formation may facilitate induction of T cell phenotypes required for response to CPI. Contrastingly, specific B cell subsets often correlate with immune-related adverse events (irAEs) in CPI. With increased appreciation of the multifaceted role of B cell immunity, novel therapeutic strategies and biomarkers can be explored and translated into the clinic to optimize CPI immunotherapy in melanoma.


Assuntos
Anticorpos Antineoplásicos/uso terapêutico , Linfócitos B , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma , Linfócitos B/imunologia , Linfócitos B/patologia , Humanos , Melanoma/imunologia , Melanoma/patologia , Melanoma/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA