Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 141761, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531499

RESUMO

Low-level radioactive wastes were disposed at the Little Forest Legacy Site (LFLS) near Sydney, Australia between 1960 and 1968. According to the disposal records, 233U contributes a significant portion of the inventory of actinide activity buried in the LFLS trenches. Although the presence of 233U in environmental samples from LFLS has been previously inferred from alpha-spectrometry measurements, it has been difficult to quantify because the 233U and 234U α-peaks are superimposed. Therefore, the amounts of 233U in groundwaters, soils and vegetation from the vicinity of the LFLS were measured using accelerator mass spectrometry (AMS). The AMS results show the presence of 233U in numerous environmental samples, particularly those obtained within, and in the immediate vicinity of, the trenched area. There is evidence for dispersion of 233U in groundwater (possibly mobilised by co-disposed organic liquids), and the data also suggest other sources of 233U contamination in addition to the trench wastes. These may include leakages and spills from waste drums as well as waste burnings, which also occurred at the site. The AMS results confirm the historic information regarding disposal of 233U in the LFLS trenches. The AMS technique has been valuable to ascertain the distribution and environmental behaviour of 233U at the LFLS and the results demonstrate the applicability of AMS for evaluating contamination of 233U at other radioactive waste sites.


Assuntos
Água Subterrânea , Espectrometria de Massas , Monitoramento de Radiação , Resíduos Radioativos , Poluentes Radioativos do Solo , Solo , Urânio , Poluentes Radioativos da Água , Resíduos Radioativos/análise , Água Subterrânea/química , Água Subterrânea/análise , Monitoramento de Radiação/métodos , Urânio/análise , Poluentes Radioativos da Água/análise , Solo/química , Poluentes Radioativos do Solo/análise , Austrália , Plantas/química
2.
J Environ Radioact ; 211: 106081, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31666204

RESUMO

This paper examines the distributions of several anthropogenic radionuclides (239+240Pu, 241Am, 137Cs, 90Sr, 60Co and 3H) at a legacy trench disposal site in eastern Australia. We compare the results to previously published data for Pu and tritium at the site. Plutonium has previously been shown to reach the surface by a bath-tubbing mechanism, following filling of the former trenches with water during intense rainfall events. This has led to some movement of Pu away from the trenched area, and we also provide evidence of elevated Pu concentrations in shallow subsurface layers above the trenched area. The distribution of 241Am is similar to Pu, and this is attributed to the similar chemistry of these actinides and the likely in-situ generation of 241Am from its parent 241Pu. Concentrations of 137Cs are mostly low in surface soils immediately above the trenches. However, similar to the actinides, there is evidence of elevated 137Cs and 90Sr concentrations in shallow subsurface layers above the trenched area. While the subsurface radionuclide peaks suggest a mechanism of subsurface transport, their interpretation is complicated by the presence of soil layers added following disposals and during the subsequent years. The distribution of 90Sr and 137Cs at the ground surface shows some elevated levels immediately above the trenches which were filled during the final 24 months of disposal operations. This is in agreement with disposal records, which indicate that greater amounts of fission products were disposed in this period. The surface distribution of 239+240Pu is also consistent with the disposal documents. Although there is extensive evidence of a mobile tritium plume in groundwater, migration of the other radionuclides by this pathway is limited. The data highlight the importance of taking into account multiple pathways for the mobilisation of key radioactive contaminants at legacy waste trench sites.


Assuntos
Monitoramento de Radiação , Poluentes Radioativos do Solo/análise , Austrália , Poluentes Radioativos da Água
3.
Environ Sci Technol ; 50(21): 11663-11671, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27704793

RESUMO

Increasing concentrations of dissolved silicate progressively retard Fe(II) oxidation kinetics in the circum-neutral pH range 6.0-7.0. As Si:Fe molar ratios increase from 0 to 2, the primary Fe(III) oxidation product transitions from lepidocrocite to a ferrihydrite/silica-ferrihydrite composite. Empirical results, supported by chemical kinetic modeling, indicated that the decreased heterogeneous oxidation rate was not due to differences in absolute Fe(II) sorption between the two solids types or competition for adsorption sites in the presence of silicate. Rather, competitive desorption experiments suggest Fe(II) was associated with more weakly bound, outer-sphere complexes on silica-ferrihydrite compared to lepidocrocite. A reduction in extent of inner-sphere Fe(II) complexation on silica-ferrihydrite confers a decreased ability for Fe(II) to undergo surface-induced hydrolysis via electronic configuration alterations, thereby inhibiting the heterogeneous Fe(II) oxidation mechanism. Water samples from a legacy radioactive waste site (Little Forest, Australia) were shown to exhibit a similar pattern of Fe(II) oxidation retardation derived from elevated silicate concentrations. These findings have important implications for contaminant migration at this site as well as a variety of other groundwater/high silicate containing natural and engineered sites that might undergo iron redox fluctuations.


Assuntos
Compostos Férricos/química , Compostos Ferrosos , Ferro/química , Oxirredução , Silicatos/química
4.
J Environ Radioact ; 151 Pt 3: 537-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26359847

RESUMO

The uranium isotope (233)U is not usually observed in alpha spectra from environmental samples due to its low natural and fallout abundance. It may be present in samples from sites in the vicinity of nuclear operations such as reactors or fuel reprocessing facilities, radioactive waste disposal sites or sites affected by clandestine nuclear operations. On an alpha spectrum, the two most abundant alpha emissions of (233)U (4.784 MeV, 13.2%; and 4.824 MeV, 84.3%) will overlap with the (234)U doublet peak (4.722 MeV, 28.4%; and 4.775 MeV, 71.4%), if present, resulting in a combined (233+234)U multiplet. A technique for quantifying both (233)U and (234)U from alpha spectra was investigated. A series of groundwater samples were measured both by accelerator mass spectrometry (AMS) to determine (233)U/(234)U atom and activity ratios and by alpha spectrometry in order to establish a reliable (233)U estimation technique using alpha spectra. The Genie™ 2000 Alpha Analysis and Interactive Peak Fitting (IPF) software packages were used and it was found that IPF with identification of three peaks ((234)U minor, combined (234)U major and (233)U minor, and (233)U major) followed by interference correction on the combined peak and a weighted average activity calculation gave satisfactory agreement with the AMS data across the (233)U/(234)U activity ratio range (0.1-20) and (233)U activity range (2-300 mBq) investigated. Correlation between the AMS (233)U and alpha spectrometry (233)U was r(2) = 0.996 (n = 10).


Assuntos
Água Subterrânea/análise , Monitoramento de Radiação/métodos , Urânio/análise , Poluentes Radioativos da Água/análise , Análise Espectral
5.
Environ Sci Technol ; 47(23): 13284-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24256473

RESUMO

Radioactive waste containing a few grams of plutonium (Pu) was disposed between 1960 and 1968 in trenches at the Little Forest Burial Ground (LFBG), near Sydney, Australia. A water sampling point installed in a former trench has enabled the radionuclide content of trench water and the response of the water level to rainfall to be studied. The trench water contains readily measurable Pu activity (~12 Bq/L of (239+240)Pu in 0.45 µm-filtered water), and there is an associated contamination of Pu in surface soils. The highest (239+240)Pu soil activity was 829 Bq/kg in a shallow sample (0-1 cm depth) near the trench sampling point. Away from the trenches, the elevated concentrations of Pu in surface soils extend for tens of meters down-slope. The broader contamination may be partly attributable to dispersion events in the first decade after disposal, after which a layer of soil was added above the trenched area. Since this time, further Pu contamination has occurred near the trench-sampler within this added layer. The water level in the trench-sampler responds quickly to rainfall and intermittently reaches the surface, hence the Pu dispersion is attributed to saturation and overflow of the trenches during extreme rainfall events, referred to as the 'bathtub' effect.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Locais de Resíduos Perigosos/estatística & dados numéricos , Plutônio/análise , Resíduos Radioativos/análise , Poluentes Radioativos do Solo/análise , Poluentes Radioativos da Água/análise , Monitoramento Ambiental/métodos , New South Wales , Contagem de Cintilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA