Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
2.
Sci Total Environ ; 925: 171692, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485013

RESUMO

Biodiversity underpins the functioning of ecosystems and the diverse benefits that nature provides to people, yet is being lost at an unprecedented rate. To halt or reverse biodiversity loss, it is critical to understand the complex interdependencies between biodiversity and key drivers and sectors to inform the development of holistic policies and actions. We conducted a literature review on the interlinkages between biodiversity and climate change, food, water, energy, transport and health ("the biodiversity nexus"). Evidence extracted from 194 peer-reviewed articles was analysed to assess how biodiversity is being influenced by and is influencing the other nexus elements. Out of the 354 interlinkages between biodiversity and the other nexus elements, 53 % were negative, 29 % were positive and 18 % contained both positive and negative influences. The majority of studies provide evidence of the negative influence of other nexus elements on biodiversity, highlighting the substantial damage being inflicted on nature from human activities. The main types of negative impacts were land or water use/change, land or water degradation, climate change, and direct species fatalities through collisions with infrastructure. Alternatively, evidence of biodiversity having a negative influence on the other nexus elements was limited to the effects of invasive alien species and vector-borne diseases. Furthermore, a range of studies provided evidence of how biodiversity and the other nexus elements can have positive influences on each other through practices that promote co-benefits. These included biodiversity-friendly management in relevant sectors, protection and restoration of ecosystems and species that provide essential ecosystem services, green and blue infrastructure including nature-based solutions, and sustainable and healthy diets that mitigate climate change. The review highlighted the complexity and context-dependency of interlinkages within the biodiversity nexus, but clearly demonstrates the importance of biodiversity in underpinning resilient ecosystems and human well-being in ensuring a sustainable future for people and the planet.


Assuntos
Ecossistema , Água , Humanos , Biodiversidade , Alimentos , Espécies Introduzidas , Europa (Continente) , Mudança Climática , Conservação dos Recursos Naturais
3.
J Org Chem ; 89(3): 1397-1406, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38214497

RESUMO

Two macrocycles were synthesized through cyclization reactions of secondary benzylic alcohols, giving pillar[6]arenes with a methyl substituent at each belt position. These macrocycles form stereoselectively with only the rtctct isomer with alternating up and down orientations of the belt methyl groups definitively identified. Isolated yields were modest (7 and 9%), but the macrocycles are prepared in a single step from either a commercially available alcohol or a very readily prepared precursor. X-ray crystal structures of the macrocycles indicate they have a capsule-like structure, which is far from the conventional pillar shape. Density functional theory calculations reveal that the energy barrier required to obtain the pillar conformation is significantly higher for these belt-functionalized macrocycles than for conventional belt-unfunctionalized pillar[6]arenes.

4.
J Neurochem ; 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38131125

RESUMO

Glycine Transporter 2 (GlyT2) inhibitors have shown considerable potential as analgesics for the treatment of neuropathic pain but also display considerable side effects. One potential source of side effects is irreversible inhibition. In this study, we have characterized the mechanism of ORG25543 inhibition of GlyT2 by first considering three potential ligand binding sites on GlyT2-the substrate site, the vestibule allosteric site and the lipid allosteric site. The three sites were tested using a combination of molecular dynamics simulations and analysis of the inhibition of glycine transport of a series point mutated GlyT2 using electrophysiological methods. We demonstrate that the lipid allosteric site on GlyT2 is the most likely binding site for ORG25543. We also demonstrate that cholesterol derived from the cell membrane can form specific interactions with inhibitor-bound transporters to form an allosteric network of regulatory sites. These observations will guide the future design of GlyT2 inhibitors with the objective of minimising on-target side effects and improving the therapeutic window for the treatment of patients suffering from neuropathic pain.

5.
ACS Infect Dis ; 9(4): 815-826, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36920795

RESUMO

The Gram-negative pathogen Acinetobacter baumannii is a primary contributor to nosocomial multi-drug-resistant (MDR) infections. To combat the rise of MDR infections, novel features of A. baumannii need to be considered for the development of new treatment options. One such feature is the preferential scavenging of exogenous lipids, including host-derived polyunsaturated fatty acids (PUFAs), for membrane phospholipid synthesis. These alterations in membrane composition impact both the lipid chemistry and the membrane biophysical properties. In this work we examine how antimicrobial peptides (AMPs) interact with the inner membranes of A. baumannii in the presence and absence of polyunsaturated phospholipids. Using coarse-grained molecular dynamics simulations of complex A. baumannii inner membrane models derived from lipidomes of bacteria grown in the presence and absence of PUFAs, we examine the impact of the adsorption of four prototypical AMPs (CAMEL, LL-37, pexiganan, and magainin-2) on the membrane biophysical properties. Our simulations reveal that the impact of AMP adsorption on the membrane biophysical properties was dependent on both the membrane composition and the specific AMP involved. Both lipid headgroup charge and tail unsaturation played important roles in driving the interactions that occurred both within the membrane and between the membrane and AMPs. The changes to the membrane biophysical properties also showed a complex relationship with the AMP's physical properties, such as AMP charge, chain length, and charge-to-mass ratio. Cumulatively, this work highlights the importance of studying AMPs using a complex membrane environment and provides insights into the mechanistic action of AMPs in polyunsaturated lipid-rich bacterial membranes.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Peptídeos Antimicrobianos , Lipídeos
6.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36690444

RESUMO

Membrane cholesterol binds to and modulates the function of various SLC6 neurotransmitter transporters, including stabilizing the outward-facing conformation of the dopamine and serotonin transporters. Here, we investigate how cholesterol binds to GlyT2 (SLC6A5), modulates glycine transport rate, and influences bioactive lipid inhibition of GlyT2. Bioactive lipid inhibitors are analgesics that bind to an allosteric site accessible from the extracellular solution when GlyT2 adopts an outward-facing conformation. Using molecular dynamics simulations, mutagenesis, and cholesterol depletion experiments, we show that bioactive lipid inhibition of glycine transport is modulated by the recruitment of membrane cholesterol to a binding site formed by transmembrane helices 1, 5, and 7. Recruitment involves cholesterol flipping from its membrane orientation, and insertion of the 3' hydroxyl group into the cholesterol binding cavity, close to the allosteric site. The synergy between cholesterol and allosteric inhibitors provides a novel mechanism of inhibition and a potential avenue for the development of potent GlyT2 inhibitors as alternative therapeutics for the treatment of neuropathic pain and therapeutics that target other SLC6 transporters.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Glicina , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Transporte de Íons , Glicina/química , Glicina/metabolismo , Glicina/farmacologia , Colesterol/metabolismo , Lipídeos
7.
Comput Struct Biotechnol J ; 20: 4532-4541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090810

RESUMO

The binding of the type 1 fimbrial adhesin FimH to mannosylated receptors is allosterically regulated to enhance the fitness of uropathogenic Escherichia coli (UPEC) during urinary tract infection (UTI). Mutations in the two FimH domains (pilin and lectin) located outside the mannose binding pocket have been shown to influence mannose binding affinity, yet the details of the allostery mechanism are not fully elucidated. Here we characterised different FimH conformational states (termed low-affinity tense and high-affinity relaxed conformations) of natural FimH variants using molecular dynamics (MD) simulation techniques and report key structural dynamics differences between them. The clinically dominant FimH30 variant from the pandemic multidrug resistant E. coli ST131 lineage contains an R166H mutation that weakens FimH interdomain interactions and allows enhanced mannose interactions with pre-existing high-affinity relaxed conformations. When expressed in an isogenic ST131 strain background, FimH30 mediated high human cell adhesion and invasion, and enhanced biofilm formation over other variants. Collectively, our computational and experimental findings support a model of FimH protein allostery that is mediated by shifts in the pre-existing conformational equilibrium of FimH, additional to the sequential step-wise process of structural perturbations transmitted from one site to another within the protein. Importantly, it is the first study to shed light into how natural mutations in a clinically dominant FimH variant influence the protein's conformational landscape optimising its function for ST131 fitness at intestinal and extraintestinal niches.

8.
Front Mol Neurosci ; 15: 886729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571374

RESUMO

Glycine receptors (GlyRs) containing the α2 subunit govern cell fate, neuronal migration and synaptogenesis in the developing cortex and spinal cord. Rare missense variants and microdeletions in the X-linked GlyR α2 subunit gene (GLRA2) have been associated with human autism spectrum disorder (ASD), where they typically cause a loss-of-function via protein truncation, reduced cell-surface trafficking and/or reduced glycine sensitivity (e.g., GLRA2Δex8-9 and extracellular domain variants p.N109S and p.R126Q). However, the GlyR α2 missense variant p.R323L in the intracellular M3-M4 domain results in a gain-of-function characterized by slower synaptic decay times, longer duration active periods and increases in channel conductance. This study reports the functional characterization of four missense variants in GLRA2 associated with ASD or developmental disorders (p.V-22L, p.N38K, p.K213E, p.T269M) using a combination of bioinformatics, molecular dynamics simulations, cellular models of GlyR trafficking and electrophysiology in artificial synapses. The GlyR α2V-22L variant resulted in altered predicted signal peptide cleavage and a reduction in cell-surface expression, suggestive of a partial loss-of-function. Similarly, GlyR α2N38K homomers showed reduced cell-surface expression, a reduced affinity for glycine and a reduced magnitude of IPSCs in artificial synapses. By contrast, GlyR α2K213E homomers showed a slight reduction in cell-surface expression, but IPSCs were larger, with faster rise/decay times, suggesting a gain-of-function. Lastly, GlyR α2T269M homomers exhibited a high glycine sensitivity accompanied by a substantial leak current, suggestive of an altered function that could dramatically enhance glycinergic signaling. These results may explain the heterogeneity of clinical phenotypes associated with GLRA2 mutations and reveal that missense variants can result in a loss, gain or alteration of GlyR α2 function. In turn, these GlyR α2 missense variants are likely to either negatively or positively deregulate cortical progenitor homeostasis and neuronal migration in the developing brain, leading to changes in cognition, learning, and memory.

9.
Phys Chem Chem Phys ; 24(18): 10667-10683, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35502640

RESUMO

Among the numerous agents that damage DNA, tobacco products remain one of the most lethal and result in the most diverse set of DNA lesions. This perspective aims to provide an overview of computational work conducted to complement experimental biochemical studies on the mutagenicity of adducts derived from the most potent tobacco carcinogen, namely 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosaminoketone or NNK). Lesions ranging from the smallest methylated thymine derivatives to the larger, flexible pyridyloxobutyl (POB) guanine adducts are considered. Insights are obtained from density functional theory (DFT) calculations and molecular dynamics (MD) simulations into the damaged nucleobase and nucleoside structures, the accommodation of the lesions in the active site of key human polymerases, the intrinsic base pairing potentials of the adducts, and dNTP incorporation opposite the lesions. Overall, the computational data provide atomic level information that can rationalize the differential mutagenic properties of tobacco-derived lesions and uncover important insights into the impact of adduct size, nucleobase, position, and chemical composition of the bulky moiety.


Assuntos
Nitrosaminas , Produtos do Tabaco , Carcinógenos/química , Carcinógenos/metabolismo , DNA/química , Adutos de DNA , Humanos , Mutagênicos , Nitrosaminas/química , Nitrosaminas/metabolismo , Nicotiana/química , Nicotiana/genética , Nicotiana/metabolismo
10.
J Mass Spectrom Adv Clin Lab ; 24: 50-56, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35469203

RESUMO

Introduction: Ion mobility-mass spectrometry (IM-MS) is an emerging technique in the -omics fields that has broad potential applicability to the clinical lab. As a rapid, gas-phase structure-based separation technique, IM-MS offers promise in isomer separations and can be easily combined with existing LC-MS methods (i.e., LC-IM-MS). Several experimental conditions, including analyte cation adducts and drift composition further provide a means to tune separations for global and/or targeted applications. Objectives: The primary objective of this study was to demonstrate the utility of IM-MS under a range of experimental conditions for detection of glucocorticoids, and specifically for the separation of several isomeric pairs. Methods: LC-IM-MS was used to characterize 16 glucocorticoids including three isomer pairs: cortisone/prednisolone, betamethasone/dexamethasone, and flunisolide/triamcinolone acetonide. Collision cross section (CCS) values were measured for all common adducts (e.g., protonated and sodiated) using both step-field and single-field methods. Alternative alkali, alkaline earth, and transition metals were introduced, such that their adducts could also be measured. Finally, four different drift gases (helium, nitrogen, argon, and carbon dioxide) were compared for their relative separation capability. Results: LC-IM-MS offered a robust, multidimensional separation technique that allowed for the 16 glucocorticoids to be analyzed and separated in three-dimensions (retention time, CCS, and m/z). Despite the relatively modest resolution of isomer pairs under standard conditions (i.e., nitrogen drift gas, sodiated ions, etc.), improvements were observed for alkaline earth and transition metals (notable barium adducts) and in carbon dioxide drift gas. Conclusion: In summary, LC-IM-MS offers potential as a clinical method due to its ease of coupling with traditional LC-MS methods and its promise for tuning separations to better resolve targeted and/or global isomers in complex biological samples.

11.
J Am Soc Nephrol ; 33(4): 769-785, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115326

RESUMO

BACKGROUND: Vascular congestion of the renal medulla-trapped red blood cells in the medullary microvasculature-is a hallmark finding at autopsy in patients with ischemic acute tubular necrosis. Despite this, the pathogenesis of vascular congestion is not well defined. METHODS: In this study, to investigate the pathogenesis of vascular congestion and its role in promoting renal injury, we assessed renal vascular congestion and tubular injury after ischemia reperfusion in rats pretreated with low-dose LPS or saline (control). We used laser Doppler flowmetry to determine whether pretreatment with low-dose LPS prevented vascular congestion by altering renal hemodynamics during reperfusion. RESULTS: We found that vascular congestion originated during the ischemic period in the renal venous circulation. In control animals, the return of blood flow was followed by the development of congestion in the capillary plexus of the outer medulla and severe tubular injury early in reperfusion. Laser Doppler flowmetry indicated that blood flow returned rapidly to the medulla, several minutes before recovery of full cortical perfusion. In contrast, LPS pretreatment prevented both the formation of medullary congestion and its associated tubular injury. Laser Doppler flowmetry in LPS-pretreated rats suggested that limiting early reperfusion of the medulla facilitated this protective effect, because it allowed cortical perfusion to recover and clear congestion from the large cortical veins, which also drain the medulla. CONCLUSIONS: Blockage of the renal venous vessels and a mismatch in the timing of cortical and medullary reperfusion results in congestion of the outer medulla's capillary plexus and promotes early tubular injury after renal ischemia. These findings indicate that hemodynamics during reperfusion contribute to the renal medulla's susceptibility to ischemic injury.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Humanos , Isquemia/complicações , Rim/patologia , Medula Renal/irrigação sanguínea , Lipopolissacarídeos , Ratos , Circulação Renal/fisiologia , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
12.
ACS Chem Neurosci ; 12(20): 3873-3884, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633798

RESUMO

Cholesterol is integral to the structure of mammalian cell membranes. Oxidation of cholesterol alters how it behaves in the membrane and influences the membrane biophysical properties. Elevated levels of oxidized cholesterol are associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. Previous work has investigated the impact of oxidized cholesterol in the context of simple model membrane systems. However, there is a growing body of literature that shows that complex membranes possessing physiological phospholipid distributions have different properties from those of binary or trinary model membranes. In the current work, the impact of oxidized cholesterol on the biophysical properties of a complex neuronal plasma membrane is investigated using coarse-grained Martini molecular dynamics simulations. Comparison of the native neuronal membrane to neuronal membranes containing 10% tail-oxidized or 10% head-oxidized cholesterol shows that the site of oxidization changes the behavior of the oxidized cholesterol in the membrane. Furthermore, species-specific domain formation is observed between each oxidized cholesterol and minor lipid classes. Although both tail-oxidized and head-oxidized cholesterols modulate the biophysical properties of the membrane, smaller changes are observed in the complex neuronal membrane than seen in the previous work on simple binary or trinary model membranes. This work highlights the presence of compensatory effects of lipid diversity in the complex neuronal membrane. Overall, this study improves our molecular-level understanding of the effects of oxidized cholesterol on the properties of neuronal tissue and emphasizes the importance of studying membranes with realistic lipid compositions.


Assuntos
Colesterol , Bicamadas Lipídicas , Animais , Membrana Celular , Simulação de Dinâmica Molecular , Oxirredução
13.
Nutrients ; 13(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34444851

RESUMO

The United States Department of Agriculture (USDA) National School Lunch and Breakfast Programs are critical for the health and food security of U.S. schoolchildren, but access to these programs was disrupted by COVID-19 pandemic-related school closures in spring 2020. While temporary policy changes to the programs enabled school food authorities (SFAs) to pivot towards distributing meals throughout their communities instead of within school buildings, SFAs faced complex challenges during COVID-19 with minimal external support. This mixed methods study investigates the implementation and financial challenges experienced by twelve of the largest urban SFAs in the U.S. during COVID-19. We conducted semi-structured interviews with SFA leaders and analyzed alongside quantitative financial data. We found that SFAs reconfigured their usual operations with nearly no preparation time while simultaneously trying to keep staff from contracting COVID-19, accommodate stakeholders with sometimes competing priorities, and remain financially solvent. Because student participation was much lower than during regular times, and revenue is tied to the number of meals served, SFAs saw drastic decreases in revenue even as they carried regular operating costs. For future crises, disaster preparedness plans that help SFAs better navigate the switch to financially viable community distribution methods are needed.


Assuntos
COVID-19/epidemiologia , Serviços de Alimentação/economia , COVID-19/economia , Criança , Estresse Financeiro , Insegurança Alimentar/economia , Serviços de Alimentação/estatística & dados numéricos , Humanos , Refeições , Pandemias , SARS-CoV-2/isolamento & purificação , Instituições Acadêmicas , Inquéritos e Questionários , Estados Unidos/epidemiologia , United States Department of Agriculture
14.
J Vet Intern Med ; 35(4): 1995-2001, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34096103

RESUMO

BACKGROUND: Monitoring blood glucose concentrations is common in critically ill neonatal foals, especially septic foals and those receiving naso-esophageal feedings or IV parenteral nutrition. Glucose typically is measured using a point-of-care (POC) glucometer but requires repeated restraint and blood collections, which may cause irritation at venipuncture sites and increased demands on nursing staff. Continuous glucose monitoring systems (CGMS) may provide an accurate alternative for monitoring blood glucose concentration. OBJECTIVES: To determine the correlation and accuracy of a CGMS to monitor neonatal foals' blood glucose concentrations as compared to a POC glucometer and laboratory chemistry analysis (CHEM). ANIMALS: Samples from 4 healthy and 4 ill neonatal foals. METHODS: A CGMS was placed on each foal, and glucose measurements acquired from this device were compared to simultaneous measurements of blood glucose concentration using a POC glucometer and CHEM. RESULTS: Two-hundred matched glucose measurements were collected from 8 neonatal foals. The mean bias (95% limits of agreement) between CGMS and CHEM, CGMS and POC glucometer, and POC glucometer and CHEM was 3.97 mg/dL (-32.5 to 40.4), 18.2 mg/dL (-28.8 to 65.2), and 22.18 mg/dL (-9.3 to 53.67), respectively. The Pearson's correlation coefficient (r) was significantly correlated among all devices: GCMS and CHEM (r = 0.81), CGMS and POC glucometer (r = 0.77) and POC glucometer-CHEM (r = 0.92). CONCLUSIONS AND CLINICAL IMPORTANCE: Within the blood glucose concentration ranges in this study (78-212 mg/dL), CGMS measurements were significantly correlated with CHEM, suggesting that it is an acceptable method to provide meaningful, immediate, and continuous glucose concentration measurements in neonatal foals while eliminating the need for repeated restraint and blood collection.


Assuntos
Automonitorização da Glicemia , Glicemia , Animais , Automonitorização da Glicemia/veterinária , Glucose , Cavalos , Monitorização Fisiológica/veterinária , Sistemas Automatizados de Assistência Junto ao Leito
15.
PeerJ ; 9: e11391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026359

RESUMO

While the movement for open research has gained momentum in recent years, there remain concerns about the broader commitment to openness in knowledge production and dissemination. Increasingly, universities are under pressure to transform themselves to engage with the wider community and to be more inclusive. Open knowledge institutions (OKIs) provide a framework that encourages universities to act with the principles of openness at their centre; not only should universities embrace digital open access (OA), but also lead actions in cultivating diversity, equity, transparency and positive changes in society. This leads to questions of whether we can evaluate the progress of OKIs and what are potential indicators for OKIs. As an exploratory study, this article reports on the collection and analysis of a list of potential OKI indicators. Data for these indicators are gathered for 43 Australian universities. The indicators provide high-dimensional and complex signals about university performances. They show evidence of large disparities in characteristics such as Indigenous employment and gender equity, and a preference for repository-mediated OA across Australian universities. We demonstrate use of the OKI evaluation framework to categorise these indicators into three platforms of diversity, communication and coordination. The analysis provides new insights into the Australian open knowledge landscape and ways of mapping different paths of OKIs.

16.
Spat Spatiotemporal Epidemiol ; 37: 100421, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33980411

RESUMO

In low and middle income countries, household surveys are a valuable source of information for a range of health and demographic indicators. Increasingly, subnational estimates are required for targeting interventions and evaluating progress towards targets. In the majority of cases, stratified cluster sampling is used, with clusters corresponding to enumeration areas. The reported geographical information varies. A common procedure, to preserve confidentiality, is to give a jittered location with the true centroid of the cluster is displaced under a known algorithm. An alternative situation, which was used for older surveys in particular, is to report the geographical region within the cluster lies. In this paper, we describe a spatial hierarchical model in which we account for inaccuracies in the cluster locations. The computational algorithm we develop is fast and avoids the heavy computation of a pure MCMC approach. We illustrate by simulation the benefits of the model, over naive alternatives.


Assuntos
Projetos de Pesquisa , Simulação por Computador , Demografia , Geografia , Humanos , Inquéritos e Questionários
17.
Chem Res Toxicol ; 34(6): 1619-1629, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33856186

RESUMO

Tobacco-derived pyridyloxobutyl (POB) DNA adducts are unique due to the large size and flexibility of the alkyl chain connecting the pyridyl ring to the nucleobase. Recent experimental work suggests that the O4-4-(3-pyridyl)-4-oxobut-1-yl-T (O4-POB-T) lesion can undergo both nonmutagenic (dATP) and mutagenic (dGTP) insertion by the translesion synthesis (TLS) polymerase (pol) η in human cells. Interestingly, the mutagenic rate for O4-POB-T replication is reduced compared to that for the smaller O4-methylthymine (O4-Me-T) lesion, and O4-POB-T yields a different mutagenic profile than the O2-POB-T variant (dTTP insertion). The present work uses a combination of density functional theory calculations and molecular dynamics simulations to probe the impact of the size and flexibility of O4-POB-T on pol η replication outcomes. Due to changes in the Watson-Crick binding face upon damage of canonical T, O4-POB-T does not form favorable hydrogen-bonding interactions with A. Nevertheless, dATP is positioned for insertion in the pol η active site by a water chain to the template strand, which suggests a pol η replication pathway similar to that for abasic sites. Although a favorable O4-POB-T:G mispair forms in the pol η active site and DNA duplexes, the inherent dynamical nature of O4-POB-T periodically disrupts interstrand hydrogen bonding that would otherwise facilitate dGTP insertion and stabilize damaged DNA duplexes. In addition to explaining the origin of the experimentally reported pol η outcomes associated with O4-POB-T replication, comparison to structural data for the O4-Me-T and O2-POB-T adducts highlights an emerging common pathway for the nonmutagenic replication of thymine alkylated lesions by pol η, yet underscores the broader impacts of bulky moiety size, flexibility, and position on the associated mutagenic outcomes.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Nicotiana/química , Humanos , Estrutura Molecular , Nicotiana/metabolismo
18.
J Am Soc Mass Spectrom ; 32(4): 895-900, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33735566

RESUMO

The objective of this research was to investigate potential changes to unfolding energy barriers for ubiquitin in the presence of the noncanonical amino acid ß-methylamino-l-alanine (BMAA). Although BMAA has been implicated in neurodegenerative disease, its specific role remains unclear. We hypothesized that formation of a ubiquitin + BMAA noncovalent complex would alter the protein's unfolding dynamics in comparison with native ubiquitin alone or in noncovalent complexes with other amino acids. Ion mobility-mass spectrometry (IM-MS) revealed that at sufficiently high concentrations BMAA did in fact form a noncovalent complex with ubiquitin, and similar complexes were identified for a range of additional amino acids. Collision-induced unfolding (CIU) was used to interrogate the unfolding of native ubiquitin and these Ubq-amino acid complexes, showing a major transition from its compact native state (∼1200 Å2) to an unfolded state (∼1400 Å2) at activation energies in the range from 8.0 to 9.0 V (entrance grid delta). The Ubq-BMAA complex, on the other hand, was observed to have a significantly higher energy barrier to unfolding, requiring more than 10.5 V. This indicates that the complex remains more stable under native conditions and this may indicate that BMAA has attached to a critical binding location worthy of further study for its potential role in the onset of neurodegenerative disease.

19.
J Chem Phys ; 154(9): 095101, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685172

RESUMO

A coarse-grain model of the epithelial plasma membrane was developed from high-resolution lipidomic data and simulated using the MARTINI force field to characterize its biophysical properties. Plasmalogen lipids, Forssman glycosphingolipids, and hydroxylated Forssman glycosphingolipids and sphingomyelin were systematically added to determine their structural effects. Plasmalogen lipids have a minimal effect on the overall biophysical properties of the epithelial plasma membrane. In line with the hypothesized role of Forssman lipids in the epithelial apical membrane, the introduction of Forssman lipids initiates the formation of glycosphingolipid-rich nanoscale lipid domains, which also include phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL). This decreases the lateral diffusion in the extracellular leaflet, as well as the area per lipid of domain forming lipids, most notably PE. Finally, hydroxylation of the Forssman glycosphingolipids and sphingomyelin further modulates the lateral organization of the membrane. Through comparison to the previously studied average and neuronal plasma membranes, the impact of membrane lipid composition on membrane properties was characterized. Overall, this study furthers our understanding of the biophysical properties of complex membranes and the impact of lipid diversity in modulating membrane properties.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/citologia , Plasmalogênios/metabolismo , Esfingolipídeos/metabolismo , Difusão , Hidroxilação
20.
Nucleic Acids Res ; 49(4): 2213-2225, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544852

RESUMO

A set of >300 nonredundant high-resolution RNA-protein complexes were rigorously searched for π-contacts between an amino acid side chain (W, H, F, Y, R, E and D) and an RNA nucleobase (denoted π-π interaction) or ribose moiety (denoted sugar-π). The resulting dataset of >1500 RNA-protein π-contacts were visually inspected and classified based on the interaction type, and amino acids and RNA components involved. More than 80% of structures searched contained at least one RNA-protein π-interaction, with π-π contacts making up 59% of the identified interactions. RNA-protein π-π and sugar-π contacts exhibit a range in the RNA and protein components involved, relative monomer orientations and quantum mechanically predicted binding energies. Interestingly, π-π and sugar-π interactions occur more frequently with RNA (4.8 contacts/structure) than DNA (2.6). Moreover, the maximum stability is greater for RNA-protein contacts than DNA-protein interactions. In addition to highlighting distinct differences between RNA and DNA-protein binding, this work has generated the largest dataset of RNA-protein π-interactions to date, thereby underscoring that RNA-protein π-contacts are ubiquitous in nature, and key to the stability and function of RNA-protein complexes.


Assuntos
Aminoácidos/química , Proteínas de Ligação a RNA/química , RNA/química , Modelos Moleculares , Ligação Proteica , Ribose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA