Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Circ Res ; 134(10): 1306-1326, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533639

RESUMO

BACKGROUND: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA. METHODS AND RESULTS: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na+ current, Kcnh2 underlying the rapid delayed rectifier K+ current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts. CONCLUSIONS: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.


Assuntos
Ritmo Circadiano , Miócitos Cardíacos , Receptores de Glucocorticoides , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Camundongos , Miócitos Cardíacos/metabolismo , Masculino , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/genética , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Conexina 43/metabolismo , Conexina 43/genética , Camundongos Knockout , Potenciais de Ação
2.
Neurophotonics ; 11(1): 014305, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38406178

RESUMO

Significance: Fiber photometry (FP) is a widely used technique in modern behavioral neuroscience, employing genetically encoded fluorescent sensors to monitor neural activity and neurotransmitter release in awake-behaving animals. However, analyzing photometry data can be both laborious and time-consuming. Aim: We propose the fiber photometry analysis (FiPhA) app, which is a general-purpose FP analysis application. The goal is to develop a pipeline suitable for a wide range of photometry approaches, including spectrally resolved, camera-based, and lock-in demodulation. Approach: FiPhA was developed using the R Shiny framework and offers interactive visualization, quality control, and batch processing functionalities in a user-friendly interface. Results: This application simplifies and streamlines the analysis process, thereby reducing labor and time requirements. It offers interactive visualizations, event-triggered average processing, powerful tools for filtering behavioral events, and quality control features. Conclusions: FiPhA is a valuable tool for behavioral neuroscientists working with discrete, event-based FP data. It addresses the challenges associated with analyzing and investigating such data, offering a robust and user-friendly solution without the complexity of having to hand-design custom analysis pipelines. This application thus helps standardize an approach to FP analysis.

3.
Biol Psychiatry Glob Open Sci ; 4(1): 51-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38058990

RESUMO

Background: Contextual fear learning is heavily dependent on the hippocampus. Despite evidence that catecholamines contribute to contextual encoding and memory retrieval, the precise temporal dynamics of their release in the hippocampus during behavior is unknown. In addition, new animal models are required to probe the effects of altered catecholamine synthesis on release dynamics and contextual learning. Methods: We generated 2 new mouse models of altered locus coeruleus-norepinephrine (NE) synthesis and utilized them together with GRABNE and GRABDA sensors and in vivo fiber photometry to investigate NE and dopamine (DA) release dynamics in the dorsal hippocampal CA1 during contextual fear conditioning. Results: Aversive foot shock increased both NE and DA release in the dorsal CA1, while freezing behavior associated with recall of fear memory was accompanied by decreased release. Moreover, we found that freezing at the recent time point was sensitive to both partial and complete loss of locus coeruleus-NE synthesis throughout prenatal and postnatal development, similar to previous observations of mice with global loss of NE synthesis beginning postnatally. In contrast, freezing at the remote time point was compromised only by complete loss of locus coeruleus-NE synthesis beginning prenatally. Conclusions: Overall, these findings provide novel insights into the role of NE in contextual fear and the precise temporal dynamics of both NE and DA during freezing behavior and highlight complex relationships between genotype, sex, and NE signaling.

4.
bioRxiv ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37546723

RESUMO

Significance: Fiber photometry is a widely used technique in modern behavioral neuroscience, employing genetically encoded fluorescent sensors to monitor neural activity and neurotransmitter release in awake-behaving animals, However, analyzing photometry data can be both laborious and time-consuming. Aim: We propose the FiPhA (Fiber Photometry Analysis) app, which is a general-purpose fiber photometry analysis application. The goal is to develop a pipeline suitable for a wide range of photometry approaches, including spectrally resolved, camera-based, and lock-in demodulation. Approach: FiPhA was developed using the R Shiny framework and offers interactive visualization, quality control, and batch processing functionalities in a user-friendly interface. Results: This application simplifies and streamlines the analysis process, thereby reducing labor and time requirements. It offers interactive visualizations, event-triggered average processing, powerful tools for filtering behavioral events and quality control features. Conclusions: FiPhA is a valuable tool for behavioral neuroscientists working with discrete, event-based fiber photometry data. It addresses the challenges associated with analyzing and investigating such data, offering a robust and user-friendly solution without the complexity of having to hand-design custom analysis pipelines. This application thus helps standardize an approach to fiber photometry analysis.

5.
Sci Adv ; 8(33): eabn9134, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984878

RESUMO

Recent data demonstrate that noradrenergic neurons of the locus coeruleus (LC-NE) are required for fear-induced suppression of feeding, but the role of endogenous LC-NE activity in natural, homeostatic feeding remains unclear. Here, we found that LC-NE activity was suppressed during food consumption, and the magnitude of this neural response was attenuated as mice consumed more pellets throughout the session, suggesting that LC responses to food are modulated by satiety state. Visual-evoked LC-NE activity was also attenuated in sated mice, suggesting that satiety state modulates LC-NE encoding of multiple behavioral states. We also found that food intake could be attenuated by brief or longer durations of LC-NE activation. Last, we found that activation of the LC to the lateral hypothalamus pathway suppresses feeding and enhances avoidance and anxiety-like responding. Our findings suggest that LC-NE neurons modulate feeding by integrating both external cues (e.g., anxiogenic environmental cues) and internal drives (e.g., satiety).

6.
ACS Meas Sci Au ; 2(2): 120-131, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36785724

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder commonly treated with levodopa (L-DOPA), which eventually induces abnormal involuntary movements (AIMs). The neurochemical contributors to these dyskinesias are unknown; however, several lines of evidence indicate an interplay of dopamine (DA) and oxidative stress. Here, DA and hydrogen peroxide (H2O2) were simultaneously monitored at discrete recording sites in the dorsal striata of hemiparkinsonian rats using fast-scan cyclic voltammetry. Mass spectrometry imaging validated the lesions. Hemiparkinsonian rats exhibited classic L-DOPA-induced AIMs and rotations as well as increased DA and H2O2 tone over saline controls after 1 week of treatment. By week 3, DA tone remained elevated beyond that of controls, but H2O2 tone was largely normalized. At this time point, rapid chemical transients were time-locked with spontaneous bouts of rotation. Striatal H2O2 rapidly increased with the initiation of contraversive rotational behaviors in lesioned L-DOPA animals, in both hemispheres. DA signals simultaneously decreased with rotation onset. The results support a role for these striatal neuromodulators in the adaptive changes that occur with L-DOPA treatment in PD and reveal a precise interplay between DA and H2O2 in the initiation of involuntary locomotion.

7.
Anal Chem ; 90(1): 888-895, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29191006

RESUMO

Hydrogen peroxide (H2O2) is an endogenous molecule that plays several important roles in brain function: it is generated in cellular respiration, serves as a modulator of dopaminergic signaling, and its presence can indicate the upstream production of more aggressive reactive oxygen species (ROS). H2O2 has been implicated in several neurodegenerative diseases, including Parkinson's disease (PD), creating a critical need to identify mechanisms by which H2O2 modulates cellular processes in general and how it affects the dopaminergic nigrostriatal pathway, in particular. Furthermore, there is broad interest in selective electrochemical quantification of H2O2, because it is often enzymatically generated at biosensors as a reporter for the presence of nonelectroactive target molecules. H2O2 fluctuations can be monitored in real time using fast-scan cyclic voltammetry (FSCV) coupled with carbon-fiber microelectrodes. However, selective identification is a critical issue when working in the presence of other molecules that generate similar voltammograms, such as adenosine and histamine. We have addressed this problem by fabricating a robust, H2O2-selective electrode. 1,3-Phenylenediamine (mPD) was electrodeposited on a carbon-fiber microelectrode to create a size-exclusion membrane, rendering the electrode sensitive to H2O2 fluctuations and pH shifts but not to other commonly studied neurochemicals. The electrodes are described and characterized herein. The data demonstrate that this technology can be used to ensure the selective detection of H2O2, enabling confident characterization of the role this molecule plays in normal physiological function as well as in the progression of PD and other neuropathies involving oxidative stress.


Assuntos
Carbono/química , Técnicas Eletroquímicas/instrumentação , Peróxido de Hidrogênio/análise , Fenilenodiaminas/química , Animais , Corpo Estriado/metabolismo , Técnicas Eletroquímicas/métodos , Masculino , Microeletrodos , Ratos Sprague-Dawley
8.
Anal Chem ; 88(16): 8129-36, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27441547

RESUMO

L-DOPA has been the gold standard for symptomatic treatment of Parkinson's disease. However, its efficacy wanes over time as motor complications develop. Very little is known about how L-DOPA therapy affects the dynamics of fluctuating dopamine concentrations in the striatum on a rapid time scale (seconds). Electrochemical studies investigating the effects of L-DOPA treatment on electrically evoked dopamine release have reported conflicting results with significant variability. We hypothesize that the uncertainty in the electrochemical data is largely due to electrode fouling caused by polymerization of L-DOPA and endogenous catecholamines on the electrode surface. Thus, we have systematically optimized the procedure for fabricating cylindrical, Nafion-coated, carbon-fiber microelectrodes. This has enabled rapid and reliable detection of L-DOPA's effects on striatal dopamine signaling in intact rat brain using fast-scan cyclic voltammetry. An acute dose of 5 mg/kg L-DOPA had no significant effect on dopamine dynamics, demonstrating the highly efficient regulatory mechanisms at work in the intact brain. In contrast, administration of 200 mg/kg L-DOPA significantly increased the amplitude of evoked dopamine release by ∼200%. Overall, this work describes a reliable tool that allows a better measure of L-DOPA augmented dopamine release in vivo, measured using fast-scan cyclic voltammetry. It provides a methodology that improves the stability and performance of the carbon-fiber microelectrode when studying the molecular mechanisms underlying L-DOPA therapy and also promises to benefit a wide variety of studies because Nafion is so commonly used in electroanalytical chemistry.


Assuntos
Carbono/química , Dopamina/análise , Técnicas Eletroquímicas , Levodopa/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fibra de Carbono , Eletrodos Implantados , Potenciais Evocados/efeitos dos fármacos , Masculino , Microeletrodos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA