Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 9(2): 706-713, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35434181

RESUMO

Spin-dependent, directional light-matter interactions form the basis of chiral quantum networks. In the solid state, quantum emitters commonly possess circularly polarized optical transitions with spin-dependent handedness. We demonstrate numerically that spin-dependent chiral coupling can be realized by embedding such an emitter in a waveguide-coupled nanocavity, which supports two near-degenerate, orthogonally polarized cavity modes. The chiral behavior arises due to direction-dependent interference between the cavity modes upon coupling to two single-mode output waveguides. Notably, an experimentally realistic cavity design simultaneously supports near-unity chiral contrast, efficient (>95%) cavity-waveguide coupling and enhanced light-matter interaction strength (Purcell factor F P > 70). In combination, these parameters enable the development of highly coherent spin-photon interfaces ready for integration into nanophotonic circuits.

2.
Phys Rev Lett ; 123(16): 167403, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31702333

RESUMO

Coherent scattering of light by a single quantum emitter is a fundamental process at the heart of many proposed quantum technologies. Unlike atomic systems, solid-state emitters couple to their host lattice by phonons. Using a quantum dot in an optical nanocavity, we resolve these interactions in both time and frequency domains, going beyond the atomic picture to develop a comprehensive model of light scattering from solid-state emitters. We find that even in the presence of a low-Q cavity with high Purcell enhancement, phonon coupling leads to a sideband that is completely insensitive to excitation conditions and to a nonmonotonic relationship between laser detuning and coherent fraction, both of which are major deviations from atomlike behavior.

3.
Nat Nanotechnol ; 13(9): 835-840, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013218

RESUMO

On-chip single-photon sources are key components for integrated photonic quantum technologies. Semiconductor quantum dots can exhibit near-ideal single-photon emission, but this can be significantly degraded in on-chip geometries owing to nearby etched surfaces. A long-proposed solution to improve the indistinguishablility is to use the Purcell effect to reduce the radiative lifetime. However, until now only modest Purcell enhancements have been observed. Here we use pulsed resonant excitation to eliminate slow relaxation paths, revealing a highly Purcell-shortened radiative lifetime (22.7 ps) in a waveguide-coupled quantum dot-photonic crystal cavity system. This leads to near-lifetime-limited single-photon emission that retains high indistinguishablility (93.9%) on a timescale in which 20 photons may be emitted. Nearly background-free pulsed resonance fluorescence is achieved under π-pulse excitation, enabling demonstration of an on-chip, on-demand single-photon source with very high potential repetition rates.

4.
Nano Lett ; 15(3): 1559-63, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25674919

RESUMO

GaAs nanowires with elongated cross sections are formed using a catalyst-free growth technique. This is achieved by patterning elongated nanoscale openings within a silicon dioxide growth mask on a (111)B GaAs substrate. It is observed that MOVPE-grown vertical nanowires with cross section elongated in the [21̅1̅] and [1̅12] directions remain faithful to the geometry of the openings. An InGaAs quantum dot with weak radial confinement is realized within each nanowire by briefly introducing indium into the reactor during nanowire growth. Photoluminescence emission from an embedded nanowire quantum dot is strongly linearly polarized (typically >90%) with the polarization direction coincident with the axis of elongation. Linearly polarized PL emission is a result of embedding the quantum dot in an anisotropic nanowire structure that supports a single strongly confined, linearly polarized optical mode. This research provides a route to the bottom-up growth of linearly polarized single photon sources of interest for quantum information applications.

5.
Opt Express ; 20(3): 3311-24, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330569

RESUMO

We report the use of a high-refractive-index aplanatic solid immersion lens (ASIL) in total internal reflection fluorescence (TIRF) microscopy. This new solid immersion total internal reflection fluorescence (SITIRF) microscopy allows highly confined surface imaging with a significantly reduced imaging depth compared with conventional TIRF microscopy. We explore the application of a high refractive index, low optical dispersion material zirconium dioxide in the SITIRF microscope and also introduce a novel system design which enables the SITIRF microscope to work either in the epi-fluorescence or TIRF modes with variable illumination angles. We use both synthetic and biological samples to demonstrate that the imaging depth in the SITIRF microscope can be confined to a few tens of nanometers. SITIRF microscopy has the advantages of performing highly selective imaging and high-resolution high-contrast imaging. Potential applications in biological imaging and future developments of SITIRF microscopy are proposed.


Assuntos
Aumento da Imagem/instrumentação , Lentes , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
6.
Opt Express ; 16(9): 6387-96, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18545342

RESUMO

We report a proof-of-principle of surface detection with air-guided quantum cascade lasers. Laser ridges were designed to exhibit an evanescent electromagnetic field on their top surface that can interact with material or liquids deposited on the device. We employ photoresist and common solvents to provide a demonstration of the sensor setup. We observed spectral as well as threshold currents changes as a function of the deposited material absorption curve. A simple model, supplemented by 2D numerical finite element method simulations, allows one to explain and correctly predict the experimental results.


Assuntos
Ar , Lasers Semicondutores , Absorção , Modelos Teóricos , Propriedades de Superfície
7.
Rev Sci Instrum ; 78(12): 123108, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18163721

RESUMO

A time domain optical coherence tomography (OCT) system is described that uses mid-infrared light (6-8 microm). To the best of our knowledge, this is the first OCT system that operates in the mid-infrared spectral region. It has been designed to characterize bioengineered tissues in terms of their structure and biochemical composition. The system is based upon a free-space Michelson interferometer with a germanium beam splitter and a liquid nitrogen cooled HgCdTe detector. A key component of this work has been the development of a broadband quantum cascade laser source (InGaAs/AlInAs containing 11 different active regions of the three well vertical transition type) that emits continuously over the 6-8 microm wavelength range. This wavelength range corresponds to the so called "mid-infrared fingerprint region" which exhibits well-defined absorption bands that are specifically attributable to the absorbing molecules. Therefore, this technology provides an opportunity for optical coherence molecular imaging without the need for molecular contrast agents. Preliminary measurements are presented.


Assuntos
Espectrofotometria Infravermelho/instrumentação , Tomografia de Coerência Óptica/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA