Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ground Water ; 43(4): 500-10, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16029176

RESUMO

A total of 176 wells in sand-and-gravel glacial aquifers in central Illinois were sampled for arsenic (As) and other chemical parameters. The results were combined with archived and published data from several hundred well samples to determine potential sources of As and the potential geochemical controls on its solubility and mobility. There was considerable spatial variability in the As concentrations. High concentrations were confined to areas smaller than 1 km in diameter. Arsenic and well depth were uncorrelated. Arsenic solubility appeared to be controlled by oxidation-reduction (redox) conditions, especially the presence of organic matter. Geochemical conditions in the aquifers are typically reducing, but only in the most reducing water does As accumulate in solution. In wells in which total organic carbon (TOC) was below 2 mg/L and sulfate (SO4(2-)) was present, As concentrations were low or below the detection limit (0.5 microg/L). Arsenic concentrations >10 microg/L were almost always found in wells where TOC was >2 mg/L and SO4(2-) was absent or at low concentrations, indicating post-SO4 (2-)reducing conditions. Iron (Fe) is common in the aquifer sediments, and Fe oxide reduction appears to be occurring throughout the aquifers. Arsenic is likely released from the solid phase as Fe oxide is reduced.


Assuntos
Arsênio/análise , Água Doce/química , Abastecimento de Água/análise , Carbono/análise , Compostos Férricos/análise , Estatísticas não Paramétricas , Sulfatos/análise
2.
Ground Water ; 41(1): 57-65, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12533076

RESUMO

Deposition from at least three episodes of glaciation left a complex glacial-drift aquifer system in central Illinois. The deepest and largest of these aquifers, the Sankoty-Mahomet Aquifer, occupies the lower part of a buried bedrock valley and supplies water to communities throughout central Illinois. Thin, discontinuous aquifers are present within glacial drift overlying the Sankoty-Mahomet Aquifer. This study was commissioned by local governments to identify possible areas where a regional water supply could be obtained from the aquifer with minimal adverse impacts on existing users. Geologic information from more than 2,200 existing water well logs was supplemented with new data from 28 test borings, water level measurements in 430 wells, and 35 km of surface geophysical profiles. A three-dimensional (3-D) hydrostratigraphic model was developed using a contouring software package, a geographic information system (GIS), and the 3-D geologic modeling package, EarthVision. The hydrostratigraphy of the glacial-drift sequence was depicted as seven uneven and discontinuous layers, which could be viewed from an infinite number of horizontal and vertical slices and as solid models of any layer. Several iterations were required before the 3-D model presented a reasonable depiction of the aquifer system. Layers from the resultant hydrostratigraphic model were imported into MODFLOW, where they were modified into continuous layers. This approach of developing a 3-D hydrostratigraphic model can be applied to other areas where complex aquifer systems are to be modeled and is also useful in helping lay audiences visualize aquifer systems.


Assuntos
Sistemas de Informação Geográfica , Geologia , Modelos Teóricos , Movimentos da Água , Desastres , Monitoramento Ambiental , Fenômenos Geológicos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA