RESUMO
BACKGROUND: Chat Generative Pre-trained Transformer (ChatGPT) and other ChatBots have emerged as tools for interacting with information in manners resembling natural human speech. Consequently, the technology is used across various disciplines, including business, education, and even in biomedical sciences. There is a need to better understand how ChatGPT can be used to advance gerontology research. Therefore, we evaluated ChatGPT responses to questions on specific topics in gerontology research, and brainstormed recommendations for its use in the field. METHODS: We conducted semistructured brainstorming sessions to identify uses of ChatGPT in gerontology research. We divided a team of multidisciplinary researchers into 4 topical groups: (a) gero-clinical science, (b) basic geroscience, (c) informatics as it relates to electronic health records, and (d) gero-technology. Each group prompted ChatGPT on a theory-, methods-, and interpretation-based question and rated responses for accuracy and completeness based on standardized scales. RESULTS: ChatGPT responses were rated by all groups as generally accurate. However, the completeness of responses was rated lower, except by members of the informatics group, who rated responses as highly comprehensive. CONCLUSIONS: ChatGPT accurately depicts some major concepts in gerontological research. However, researchers have an important role in critically appraising the completeness of its responses. Having a single generalized resource like ChatGPT may help summarize the preponderance of evidence in the field to identify gaps in knowledge and promote cross-disciplinary collaboration.
Assuntos
Geriatria , Humanos , Pesquisa Biomédica , IdosoRESUMO
Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.
Assuntos
Músculo Esquelético , Fosforilação Oxidativa , Piruvato Desidrogenase Quinase de Transferência de Acetil , Receptores de Hidrocarboneto Arílico , Insuficiência Renal Crônica , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/metabolismo , Citocromo P-450 CYP1B1/genética , Modelos Animais de Doenças , Metabolismo Energético , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Insuficiência Renal Crônica/metabolismo , Triptofano/metabolismo , Uremia/metabolismoRESUMO
We and others previously identified circumferential bands of collagen named annular furrows as key components of a damage sensor in the cuticle of Caenorhabditis elegans that regulates cytoprotective genes. Mutation or loss of noncollagen secreted proteins OSM-7, OSM-8, and OSM-11 activate the same cytoprotective responses without obvious changes to the cuticle indicating that other extracellular proteins are involved. Here, we used RNAi screening to identify protein kinase DRL-1 as a key modulator of cytoprotective gene expression and stress resistance in furrow and extracellular OSM protein mutants. DRL-1 functions downstream from furrow disruption and is expressed in cells that induce cytoprotective genes. DRL-1 is not required for the expression of cytoprotective genes under basal or oxidative stress conditions consistent with specificity to extracellular signals. DRL-1 was previously shown to regulate longevity via a "Dietary Restriction-Like" state, but it functions downstream from furrow disruption by a distinct mechanism. The kinase domain of DRL-1 is related to mammalian MEKK3, and MEKK3 is recruited to a plasma membrane osmosensor complex by a scaffold protein. In C. elegans, DRL-1 contains an atypical hydrophobic C-terminus with predicted transmembrane domains and is constitutively expressed at or near the plasma membrane where it could function to receive extracellular damage signals for cells that mount cytoprotective responses.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Matriz Extracelular/metabolismo , Longevidade/genética , Mamíferos , Interferência de RNARESUMO
BACKGROUND: Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. RESULTS: By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. CONCLUSION: Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.
Assuntos
Cádmio/toxicidade , Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica , Resposta ao Choque Térmico/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , Splicing de RNA , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Resposta ao Choque Térmico/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Estresse FisiológicoRESUMO
Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT-3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates detoxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling.
Assuntos
Caenorhabditis elegans/fisiologia , Meio Ambiente , Estresse Fisiológico , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Interação Gene-Ambiente , Sequenciamento de Nucleotídeos em Larga Escala , Inativação Metabólica/genética , Osmose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , TransgenesRESUMO
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed.