Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1117023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778713

RESUMO

Sucrose controls various developmental and metabolic processes in plants. It also functions as a signaling molecule in the synthesis of carbohydrates, storage proteins, and anthocyanins, as well as in floral induction and defense response. We found that sucrose preferentially induced OsWRKY7, whereas other sugars (such as mannitol, glucose, fructose, galactose, and maltose) did not have the same effect. A hexokinase inhibitor mannoheptulose did not block the effect of sucrose, which is consequently thought to function directly. MG132 inhibited sucrose induction, suggesting that a repressor upstream of OsWRKY7 is degraded by the 26S proteasome pathway. The 3-kb promoter sequence of OsWRKY7 was preferentially induced by sucrose in the luciferase system. Knockout mutants of OsWRKY7 were more sensitive to the rice blast fungus Magnaporthe oryzae, whereas the overexpression of OsWRKY7 enhanced the resistance, indicating that this gene is a positive regulator in the plant defense against this pathogen. The luciferase activity driven by the OsPR10a promoter was induced by OsWRKY7 and this transcription factor bound to the promoter region of OsPR10a, suggesting that OsWRKY7 directly controls the expression of OsPR10a. We conclude that sucrose promotes the transcript level of OsWRKY7, thereby increasing the expression of OsPR10a for the defense response in rice.

2.
Plant Cell Environ ; 45(4): 1049-1064, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098547

RESUMO

Chemical pesticides are still frequently overused to diminish such crop loss caused by biotic stress despite the threat to humans and the environment. Thus, it is urgent to find safer and more effective defense strategies. In this study, we report that caffeine, implanted through a transgenic approach, enhances resistance against variable biotic stresses in rice without fitness cost. Caffeine-producing rice (CPR) was generated by introducing three N-methyltransferase genes involved in the biosynthesis of caffeine in coffee plants. The CPR plants have no differences in morphology and growth compared to their wild-type counterparts, but they show strongly enhanced resistance to both bacterial leaf blight, rice blast, and attack of white-backed planthoppers. Caffeine acts as a repellent agent against rice pathogens. Moreover, caffeine triggers a series of Ca2+ signalling-like processes to synthesize salicylic acid (SA), a hormone associated with plant resistance. In CPR, phosphodiesterase was inhibited by caffeine, cAMP and cGMP increased, intracellular Ca2+ increased, phenylalanine lyase (PAL) was activated by OsCPK1, and SA synthesis was activated. This finding is a novel strategy to improve resistance against the biotic stresses of crops with a special type of defense inducer.


Assuntos
Cafeína , Oryza , Cafeína/farmacologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácido Salicílico/farmacologia , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA