Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11203, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755235

RESUMO

Seagrass habitats play a major role in fisheries productivity through nursery functions and feeding grounds for diverse fish species. However, little is known about the seasonal distribution of fish larvae at large spatial scales in coastal East Africa. We investigated drivers of the seasonal fish larvae abundance and composition in seagrass habitats in Kenya and Tanzania. We found a high diversity of fish larvae (54 families) inhabiting seagrass habitats that differed between sites and seasons. Fish larvae abundance were highest in Kenya, particularly during the northeast monsoon season. Overall, total larval abundances per site were low, reaching less than 190 individuals/100 m3 in Kenya and less than 40 individuals/100 m3 in Tanzania, likely related to the low productivity and strong hydrodynamic processes in this region. Our data suggests that most of the fish spawn year-round in these tropical waters as we did not find strong seasonal patterns. All sites had a high relative abundance of larvae from demersal spawning fishes, indicating that many fish species move to coastal sites for spawning. Primary productivity and dissolved oxygen, driven by hydrodynamics conditions are positively related to fish larvae productivity both in Kenya and Tanzania. These findings indicate that the occurrence of both resident and transient fish larvae in seagrass meadows is driven by strong hydrodynamic and tidal processes that transport fish larvae across adjacent habitats.


Assuntos
Ecossistema , Peixes , Larva , Estações do Ano , Animais , Peixes/fisiologia , Peixes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Quênia , Tanzânia , África Oriental , Biodiversidade
2.
J Plankton Res ; 46(2): 117-125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572122

RESUMO

In highly seasonal systems, the emergence of planktonic resting stages from the sediment is a key driver for bloom timing and plankton community composition. The termination of the resting phase is often linked to environmental cues, but the extent to which recruitment of resting stages is affected by climate change remains largely unknown for coastal environments. Here we investigate phyto- and zooplankton recruitment from oxic sediments in the Baltic Sea in a controlled experiment under proposed temperature and light increase during the spring and summer. We find that emergence of resting stage differs between seasons and the abiotic environment. Phytoplankton recruitment from resting stages were high in spring with significantly higher emergence rates at increased temperature and light levels for dinoflagellate and cyanobacteria than for diatoms, which had highest emergence under cold and dark conditions. In comparison, hatching of copepod nauplii was not affected by increased temperature and light levels. These results show that activation of plankton resting stages are affected to different degrees by increasing temperature and light levels, indicating that climate change affects plankton dynamics through processes related to resting stage termination with potential consequences for bloom timing, community composition and trophic mismatch.

3.
Microb Ecol ; 87(1): 48, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409540

RESUMO

In aquatic ecosystems, zooplankton-associated bacteria potentially have a great impact on the structure of ecosystems and trophic networks by providing various metabolic pathways and altering the ecological niche of host species. To understand the composition and drivers of zooplankton gut microbiota, we investigated the associated microbial communities of four zooplankton genera from different seasons in the Baltic Sea using the 16S rRNA gene. Among the 143 ASVs (amplified sequence variants) observed belonging to heterotrophic bacteria, 28 ASVs were shared across all zooplankton hosts over the season, and these shared core ASVs represented more than 25% and up to 60% of relative abundance in zooplankton hosts but were present at low relative abundance in the filtered water. Zooplankton host identity had stronger effects on bacterial composition than seasonal variation, with the composition of gut bacterial communities showing host-specific clustering patterns. Although bacterial compositions and dominating core bacteria were different between zooplankton hosts, higher gut bacteria diversity and more bacteria contributing to the temporal variation were found in Temora and Pseudocalanus, compared to Acartia and Synchaeta. Diet diatom and filamentous cyanobacteria negatively correlated with gut bacteria diversity, but the difference in diet composition did not explain the dissimilarity of gut bacteria composition, suggesting a general effect of diet on the inner conditions in the zooplankton gut. Synchaeta maintained high stability of gut bacterial communities with unexpectedly low bacteria-bacteria interactions as compared to the copepods, indicating host-specific regulation traits. Our results suggest that the patterns of gut bacteria dynamics are host-specific and the variability of gut bacteria is not only related to host taxonomy but also related to host behavior and life history traits.


Assuntos
Microbioma Gastrointestinal , Microbiota , Rotíferos , Animais , Zooplâncton/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Bactérias , Microbioma Gastrointestinal/genética
4.
Sci Adv ; 9(17): eadg1096, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37126549

RESUMO

Models that estimate rates of energy flow in complex food webs often fail to account for species-specific prey selectivity of diverse consumer guilds. While DNA metabarcoding is increasingly used for dietary studies, methodological biases have limited its application for food web modeling. Here, we used data from dietary metabarcoding studies of zooplankton to calculate prey selectivity indices and assess energy fluxes in a pelagic resource-consumer network. We show that food web dynamics are influenced by prey selectivity and temporal match-mismatch in growth cycles and that cyanobacteria are the main source of primary production in the investigated coastal pelagic food web. The latter challenges the common assumption that cyanobacteria are not supporting food web productivity, a result that is increasingly relevant as global warming promotes cyanobacteria dominance. While this study provides a method for how DNA metabarcoding can be used to quantify energy fluxes in a marine food web, the approach presented here can easily be extended to other ecosystems.


Assuntos
Cianobactérias , Cadeia Alimentar , Animais , Ecossistema , Código de Barras de DNA Taxonômico , Zooplâncton
5.
J Plankton Res ; 45(2): 389-403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37012975

RESUMO

The plankton community consists of diverse interacting species. The estimation of species interactions in nature is challenging. There is limited knowledge on how plankton interactions are influenced by environmental conditions because of limited understanding of zooplankton feeding strategies and factors affecting trophic interactions. In this study, we used DNA-metabarcoding to investigate trophic interactions in mesozooplankton predators and the influence of prey availability on their feeding behavior. We found that mesozooplankton feeding strategies vary within species across an environmental gradient. Some species, such as Temora longicornis consistently used a selective strategy, while diets of Centropages hamatus and Acartia spp. varied between stations, showing a trophic plasticity with the prey community. We found a dominance of Synechococcales reads in Temora's gut content and a high prey diversity for the cladoceran Evadne nordmanni. Our study shows the wide range of prey species that supports mesozooplankton community and helps to understand the spatial and temporal complexity of plankton species interactions and discriminate the selectivity ability of four zooplankton key species. Due to the central role of plankton in marine waters, a better comprehension of the spatiotemporal variability in species interactions helps to estimate fluxes to benthic and pelagic predators.

6.
Aquat Toxicol ; 249: 106210, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35665646

RESUMO

The neurotoxic secondary metabolite ß-N-methylamino-L-alanine (BMAA) and its structural isomer 2,4-diaminobutyric acid (DAB) are known to be produced by various phytoplankton groups. Despite the worldwide spread of these toxin producers, no obvious role and function of BMAA and DAB in diatoms have been identified. Here, we investigated the effects of biotic factors, i.e., predators and competitors, as possible causes of BMAA and/or DAB regulation in the two diatom species Phaeodactylum tricornutum and Thalassiosira pseudonana. DAB was specifically regulated in T. pseudonana by the presence of predators and competitors. The effects of DAB on both diatoms as competitors and on the copepod Tigriopus sp. as predator at individual and at population levels were examined. The toxic effects of DAB on the growth of T. pseudonana and the population of Tigriopus sp. were significant. The effect of DAB as a defensive secondary metabolite is assumed to be environmentally relevant depending on the number of the copepods. The results show a potential function of DAB that can play an important role in defense mechanisms of T. pseudonana.


Assuntos
Diatomáceas , Poluentes Químicos da Água , Aminobutiratos , Mecanismos de Defesa , Diatomáceas/metabolismo , Poluentes Químicos da Água/toxicidade
7.
Sci Rep ; 12(1): 10952, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768563

RESUMO

Marine communities undergo rapid changes related to human-induced ecosystem pressures. The Baltic Sea pelagic food web has experienced several regime shifts during the past century, resulting in a system where competition between the dominant planktivorous mesopredatory clupeid fish species herring (Clupea harengus) and sprat (Sprattus sprattus) and the rapidly increasing stickleback (Gasterosteus aculeatus) population is assumed to be high. Here, we investigate diet overlap between these three planktivorous fishes in the Baltic Sea, utilizing DNA metabarcoding on the 18S rRNA gene and the COI gene, targeted qPCR, and microscopy. Our results show niche differentiation between clupeids and stickleback, and highlight that rotifers play an important role in this pattern, as a resource that is not being used by the clupeids nor by other zooplankton in spring. We further show that all the diet assessment methods used in this study are consistent, but also that DNA metabarcoding describes the plankton-fish link at the highest taxonomic resolution. This study suggests that rotifers and other understudied soft-bodied prey may have an important function in the pelagic food web and that the growing population of pelagic stickleback may be supported by the open feeding niche offered by the rotifers.


Assuntos
Ecossistema , Smegmamorpha , Animais , Código de Barras de DNA Taxonômico , Peixes/genética , Microscopia , Zooplâncton/genética
9.
Sci Rep ; 12(1): 4196, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264688

RESUMO

Fish larvae supply in nearshore vegetated habitats, such as seagrass meadows and mangroves, contributes significantly to sustainable fish stocks. Yet, little information is available on distribution patterns of fish larvae in mangrove and seagrass habitats of the western Indian Ocean. The present study investigated the abundance, diversity and assemblage composition of fish larvae in mangrove creeks, inshore seagrass meadows (located adjacent to mangroves) and nearshore seagrass meadows (located in-between mangroves and coral reefs) in two coastal seascapes of Zanzibar (Tanzania) across seasons for 1 year. The highest mean abundances of fish larvae were recorded in mangrove creeks, while nearshore- and inshore seagrass meadows showed similar mean abundance levels. Generally, fish larvae representing 42 families were identified, with the fourteen most abundant families comprising 83% of all specimens. Fish larvae communities were dominated by specimens of the postflexion growth stage in all habitats, except in mangrove creeks in one of the two seascapes (i.e. Chwaka Bay) from April through June when abundances of the preflexion and very small-sized individuals were exceptionally high. Slightly higher fish larvae abundances were observed in mangroves during the southeast monsoon compared to the northeast monsoon, and there were also differences across months within monsoon periods for all three habitats studied. Assemblage composition of larvae did, however, not vary significantly in time or space. Our findings suggest that mangroves and seagrass meadows are highly linked shallow-water habitats with high retention of fish larvae contributing to similarity in assemblage compositions across shallow coastal seascapes. Conservation and management efforts should prioritize connected shallow-water seascapes for protection of fish larvae and to uphold sustainable coastal fisheries.


Assuntos
Recifes de Corais , Peixes , Animais , Ecossistema , Humanos , Larva , Estações do Ano , Tanzânia , Água
10.
Sci Rep ; 11(1): 24033, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911983

RESUMO

In coastal aphotic sediments, organic matter (OM) input from phytoplankton is the primary food resource for benthic organisms. Current observations from temperate ecosystems like the Baltic Sea report a decline in spring bloom diatoms, while summer cyanobacteria blooms are becoming more frequent and intense. These climate-driven changes in phytoplankton communities may in turn have important consequences for benthic biodiversity and ecosystem functions, but such questions are not yet sufficiently explored experimentally. Here, in a 4-week experiment, we investigated the response of microeukaryotic and bacterial communities to different types of OM inputs comprising five ratios of two common phytoplankton species in the Baltic Sea, the diatom Skeletonema marinoi and filamentous cyanobacterium Nodularia spumigena. Metabarcoding analyses on 16S and 18S ribosomal RNA (rRNA) at the experiment termination revealed subtle but significant changes in diversity and community composition of microeukaryotes in response to settling OM quality. Sediment bacteria were less affected, although we observed a clear effect on denitrification gene expression (nirS and nosZ), which was positively correlated with increasing proportions of cyanobacteria. Altogether, these results suggest that future changes in OM input to the seafloor may have important effects on both the composition and function of microbenthic communities.


Assuntos
Bactérias , Microbiologia Ambiental , Eucariotos , Sedimentos Geológicos/microbiologia , Fitoplâncton/classificação , Bactérias/classificação , Biodiversidade , Código de Barras de DNA Taxonômico , Ecossistema , Eucariotos/classificação , Regulação da Expressão Gênica , Fitoplâncton/genética , RNA Ribossômico 18S/genética
11.
Proc Biol Sci ; 288(1953): 20210908, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34130506

RESUMO

Alternative pathways of energy transfer guarantee the functionality and productivity in marine food webs that experience strong seasonality. Nevertheless, the complexity of zooplankton interactions is rarely considered in trophic studies because of the lack of detailed information about feeding interactions in nature. In this study, we used DNA metabarcoding to highlight the diversity of trophic niches in a wide range of micro- and mesozooplankton, including ciliates, rotifers, cladocerans, copepods and their prey, by sequencing 16- and 18S rRNA genes. Our study demonstrates that the zooplankton trophic niche partitioning goes beyond both phylogeny and size and reinforces the importance of diversity in resource use for stabilizing food web efficiency by allowing for several different pathways of energy transfer. We further highlight that small, rarely studied zooplankton (rotifers and ciliates) fill an important role in the Baltic Sea pelagic primary production pathways and the potential of ciliates, rotifers and crustaceans in the utilization of filamentous and picocyanobacteria within the pelagic food web. The approach used in this study is a suitable entry point to ecosystem-wide food web modelling considering species-specific resource use of key consumers.


Assuntos
Copépodes , Ecossistema , Animais , Países Bálticos , Copépodes/genética , Código de Barras de DNA Taxonômico , Cadeia Alimentar , Zooplâncton/genética
12.
Mol Ecol ; 30(14): 3515-3529, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33993575

RESUMO

Phytoplankton comprises a large fraction of the vertical carbon flux to deep water via the sinking of particulate organic matter (POM). However, despite the importance of phytoplankton in the coupling of benthic-pelagic productivity, the extent to which its deposition in the sediment affects bacterial dynamics at the water-sediment interface is poorly understood. Here, we conducted a microcosm experiment in which varying mixtures of diatom and cyanobacteria, representing phytoplankton-derived POM of differing quality, served as inputs to sediment cores. Characterization of 16S rRNA gene of the bacterial communities at the water-sediment interface showed that bacterial α-diversity was not affected by POM addition, while bacterial ß-diversity changed significantly along the POM quality gradient, with the variation driven by changes in relative abundance rather than in taxon replacement. Analysing individual taxa abundances across the POM gradient revealed two distinct bacterial responses, in which taxa within either diatom- or cyanobacteria-favoured groups were more phylogenetically closely related to one another than other taxa found in the water. Moreover, there was little overlap in taxon identity between sediment and water communities, suggesting the minor role played by sediment bacteria in influencing the observed changes in bacterial communities in the overlying water. Together, these results showed that variability in phytoplankton-originated POM can impact bacterial dynamics at the water-sediment interface. Our findings highlight the importance of considering the potential interactions between phytoplankton and bacteria in benthic-pelagic coupling in efforts to understand the structure and function of bacterial communities under a changing climate.


Assuntos
Cianobactérias , Diatomáceas , Cianobactérias/genética , Diatomáceas/genética , Fitoplâncton/genética , RNA Ribossômico 16S/genética , Água
13.
Mol Ecol ; 29(17): 3380-3395, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32681684

RESUMO

Knowledge of zooplankton in situ diet is critical for accurate assessment of marine ecosystem function and structure, but due to methodological constraints, there is still a limited understanding of ecological networks in marine ecosystems. Here, we used DNA-metabarcoding to study trophic interactions, with the aim to unveil the natural diet of zooplankton species under temporal variation of food resources. Several target consumers, including copepods and cladocerans, were investigated by sequencing 16S rRNA and 18S rRNA genes to identify prokaryote and eukaryote potential prey present in their guts. During the spring phytoplankton bloom, we found a dominance of diatom and dinoflagellate trophic links to copepods. During the summer period, zooplankton including cladocerans showed a more diverse diet dominated by cyanobacteria and heterotrophic prey. Our study suggests that copepods present trophic plasticity, changing their natural diet over seasons, and adapting their feeding strategies to the available prey spectrum, with some species being more selective. We did not find a large overlap of prey consumed by copepods and cladocerans, based on prey diversity found in their guts, suggesting that they occupy different roles in the trophic web. This study represents the first molecular approach to investigate several zooplankton-prey associations under seasonal variation, and highlights how, unlike other techniques, the diversity coverage is high when using DNA, allowing the possibility to detect a wide range of trophic interactions in plankton communities.


Assuntos
Ecossistema , Plâncton , Animais , DNA , Código de Barras de DNA Taxonômico , Cadeia Alimentar , Plâncton/genética , RNA Ribossômico 16S/genética , Zooplâncton/genética
14.
Ecol Evol ; 10(11): 5135-5151, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32551088

RESUMO

To predict effects of global change on zooplankton populations, it is important to understand how present species adapt to temperature and how they respond to stressors interacting with temperature. Here, we ask if the calanoid copepod Eurytemora affinis from the Baltic Sea can adapt to future climate warming. Populations were sampled at sites with different temperatures. Full sibling families were reared in the laboratory and used in two common garden experiments (a) populations crossed over three temperature treatments 12, 17, and 22.5°C and (b) populations crossed over temperature in interaction with salinity and algae of different food quality. Genetic correlations of the full siblings' development time were not different from zero between 12°C and the two higher temperatures 17 and 22.5°C, but positively correlated between 17 and 22.5°C. Hence, a population at 12°C is unlikely to adapt to warmer temperature, while a population at ≥17°C can adapt to an even higher temperature, that is, 22.5°C. In agreement with the genetic correlations, the population from the warmest site of origin had comparably shorter development time at high temperature than the populations from colder sites, that is, a cogradient variation. The population with the shortest development time at 22.5°C had in comparison lower survival on low quality food, illustrating a cost of short development time. Our results suggest that populations from warmer environments can at present indirectly adapt to a future warmer Baltic Sea, whereas populations from colder areas show reduced adaptation potential to high temperatures, simply because they experience an environment that is too cold.

15.
Philos Trans R Soc Lond B Biol Sci ; 375(1804): 20190652, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32536314

RESUMO

Compound-specific isotope analyses (CSIA) of fatty acids (FA) constitute a promising tool for tracing energy flows in food-webs. However, past applications of FA-specific carbon isotope analyses have been restricted to a relatively coarse food-source separation and mainly quantified dietary contributions from different habitats. Our aim was to evaluate the potential of FA-CSIA to provide high-resolution data on within-system energy flows using algae and zooplankton as model organisms. First, we investigated the power of FA-CSIA to distinguish among four different algae groups, namely cyanobacteria, chlorophytes, haptophytes and diatoms. We found substantial within-group variation but also demonstrated that δ13C of several FA (e.g. 18:3ω3 or 18:4ω3) differed among taxa, resulting in group-specific isotopic fingerprints. Second, we assessed changes in FA isotope ratios with trophic transfer. Isotope fractionation was highly variable in daphnids and rotifers exposed to different food sources. Only δ13C of nutritionally valuable poly-unsaturated FA remained relatively constant, highlighting their potential as dietary tracers. The variability in fractionation was partly driven by the identity of food sources. Such systematic effects likely reflect the impact of dietary quality on consumers' metabolism and suggest that FA isotopes could be useful nutritional indicators in the field. Overall, our results reveal that the variability of FA isotope ratios provides a substantial challenge, but that FA-CSIA nevertheless have several promising applications in food-web ecology. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.


Assuntos
Organismos Aquáticos/química , Isótopos de Carbono/análise , Ácidos Graxos/análise , Cadeia Alimentar , Animais , Clorófitas/química , Copépodes/química , Cianobactérias/química , Diatomáceas/química , Haptófitas/química , Rotíferos/química
16.
PLoS One ; 15(4): e0231690, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353002

RESUMO

The Baltic Sea summer phytoplankton community plays an important role in biogeochemical cycling and in the transfer of energy through the food web via zooplankton. We aimed to improve the understanding of the degree to which large-scale versus local environmental dynamics regulate phytoplankton dynamics by analyzing time series at the Baltic Sea scale. We used dynamic factor analysis to study if there are common patterns of interannual variation that are shared ("common trends") among summer phytoplankton total and class-level biomass time series observed across Baltic Sea latitudinal gradients in salinity and temperature. We evaluated alternative hypotheses regarding common trends among summer phytoplankton biomass: Baltic Sea-wide common trends; common trends by geography (latitude and basin); common trends differing among functional groups (phytoplankton classes); or common trends driven by both geography and functional group. Our results indicated little support for a common trend in total summer phytoplankton biomass. At a finer resolution, classes had common trends that were most closely associated with the cryptophyte and cyanobacteria time series with patterns that differed between northern and southern sampling stations. These common trends were also very sensitive to two anomalous years (1990, 2008) of cryptophyte biomass. The Baltic Sea Index, a regional climate index, was correlated with two common class trends that shifted in mean state around the mid-1990s. The limited coherence in phytoplankton biomass variation over time despite known, large-scale, ecosystem shifts suggests that stochastic dynamics at local scales limits the ability to observe common trends at the scale of monitoring data collection.


Assuntos
Biomassa , Fitoplâncton/crescimento & desenvolvimento , Estações do Ano , Criptófitas/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Modelos Estatísticos
17.
Ambio ; 48(8): 831-854, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30506502

RESUMO

Ocean temperatures are rising; species are shifting poleward, and pH is falling (ocean acidification, OA). We summarise current understanding of OA in the brackish Baltic-Skagerrak System, focussing on the direct, indirect and interactive effects of OA with other anthropogenic drivers on marine biogeochemistry, organisms and ecosystems. Substantial recent advances reveal a pattern of stronger responses (positive or negative) of species than ecosystems, more positive responses at lower trophic levels and strong indirect interactions in food-webs. Common emergent themes were as follows: OA drives planktonic systems toward the microbial loop, reducing energy transfer to zooplankton and fish; and nutrient/food availability ameliorates negative impacts of OA. We identify several key areas for further research, notably the need for OA-relevant biogeochemical and ecosystem models, and understanding the ecological and evolutionary capacity of Baltic-Skagerrak ecosystems to respond to OA and other anthropogenic drivers.


Assuntos
Ecossistema , Água do Mar , Animais , Países Bálticos , Ecologia , Concentração de Íons de Hidrogênio , Oceanos e Mares
18.
Ambio ; 48(6): 552-564, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30536186

RESUMO

Seal populations are recovering in many regions around the world and, consequently, they are increasingly interacting with fisheries. We used an Ecopath with Ecosim model for the offshore Central Baltic Sea to investigate the interactions between the changes in fish stocks and grey seal (Halichoerus grypus) population under different fishing and environmental scenarios for the twenty-first century. The assumed climate, eutrophication and cod (Gadus morhua) fisheries scenarios modified seal predation impacts on fish. Fish biomass and catches are more affected by fishing mortality and the environment than by seal predation. Our results highlight that the impacts of the increasing seal population on lower trophic levels are complex; thus, we emphasize the need to consider a range of possible ecosystem contexts when evaluating potential impacts of top predators. Finally, we suggest that an increasing seal population is not likely to hinder the preservation of the main Baltic fish stocks.


Assuntos
Pesqueiros , Focas Verdadeiras , Animais , Países Bálticos , Ecossistema , Comportamento Predatório
19.
J Fish Biol ; 94(1): 29-39, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30515816

RESUMO

Fish larvae abundances, diversity and trophic position across shallow seagrass, coral reef and open water habitats were examined to characterize their distribution in coastal East Africa. Larvae were identified to family and analysed for abundance differences between sites and habitats, trophic level using stable-isotope analysis and parental spawning mode. Abundances differed greatly between sites with the highest numbers of larvae occurring in the open-water and seagrass habitats. Larval fish diversity was high across habitats with 51 families identified with small differences between sites and among habitats. Notably, larvae of abundant large herbivorous fishes present in reef and seagrass habitats were almost completely absent at all sampling locations. In the seagrass, demersal spawned larvae were more abundant compared with the reef and open-water habitats. Stable-isotope analysis revealed that fish larvae have a varied diet, occupying trophic level two to three and utilizing planktonic prey. This study offers new insights into distributional aspects of fish larvae along the East African coast where such information is sparse.


Assuntos
Ecossistema , Peixes/fisiologia , África Oriental , Animais , Biodiversidade , Recifes de Corais , Demografia , Cadeia Alimentar , Larva/fisiologia
20.
Sci Adv ; 4(5): eaar8195, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750199

RESUMO

Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches. This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.


Assuntos
Ecossistema , Oceanos e Mares , Países Bálticos , Mudança Climática , Economia , Geografia , Biologia Marinha , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA