RESUMO
One of the hallmarks of vascular aging is increased pulse pressure. This elevated pulse pressure is associated with deleterious effects on cerebral vascular function; however, it is unknown if age modulates the susceptibility to high pulse pressure. To examine the effects of age on the cerebral artery response to pulse pressure, we studied isolated cerebral arteries collected from young (6.1 ± 0.2 mo) and old (26.7 ± 0.5 mo) male C57BL/6 mice. Isolated cerebral arteries were exposed ex vivo to static pressure, low pulse pressure (25 mmHg), and high pulse pressure (50 mmHg). In cerebral arteries from young mice, endothelium-dependent dilation was similar between the static and low pulse pressure conditions. Exposure to high pulse pressure impaired endothelium-dependent dilation in cerebral arteries from young mice, mediated by less nitric oxide bioavailability and greater oxidative stress. Cerebral arteries from old mice had impaired cerebral artery endothelium-dependent dilation at static pressure compared with young cerebral arteries. However, exposure to low or high pulse pressure did not cause any further impairments to endothelium-dependent dilation in old cerebral arteries compared with static pressure. The old cerebral arteries had less distension during exposure to high pulse pressure and greater stiffness compared with young cerebral arteries. These results indicate that acute exposure to high pulse pressure impairs endothelium-dependent dilation in young, but not old, cerebral arteries. The greater stiffness of cerebral arteries from old mice potentially protects against the negative consequences of high pulse pressure.
Assuntos
Artérias Cerebrais , Vasodilatação , Camundongos , Masculino , Animais , Pressão Sanguínea , Camundongos Endogâmicos C57BL , Envelhecimento/fisiologia , Endotélio VascularRESUMO
There are no effective treatments available to halt or reverse the progression of age-related cognitive decline and Alzheimer's disease. Thus, there is an urgent need to understand the underlying mechanisms of disease etiology and progression to identify novel therapeutic targets. Age-related changes to the vasculature, particularly increases in stiffness of the large elastic arteries, are now recognized as important contributors to brain aging. There is a growing body of evidence for an association between greater large artery stiffness and cognitive impairment among both healthy older adults and patients with Alzheimer's disease. However, studies in humans are limited to only correlative evidence, whereas animal models allow researchers to explore the causative mechanisms linking arterial stiffness to neurocognitive dysfunction and disease. Recently, several rodent models of direct modulation of large artery stiffness and the consequent effects on the brain have been reported. Common outcomes among these models have emerged, including evidence that greater large artery stiffness causes cerebrovascular dysfunction associated with increased oxidative stress and inflammatory signaling. The purpose of this mini-review is to highlight the recent findings associating large artery stiffness with deleterious brain outcomes, with a specific focus on causative evidence obtained from animal models. We will also discuss the gaps in knowledge that remain in our understanding of how large artery stiffness affects brain function and disease outcomes.