Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 14: 1112608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090732

RESUMO

Introduction: Inflammation is a key driver of morbidity in the vulnerable preterm infant exposed to pre- and postnatal hazards and significantly contributes to chronic lung disease, i.e. bronchopulmonary dysplasia (BPD). However, the early changes in innate immunity associated with BPD development are incompletely understood. Methods: In very immature preterm infants below 32 weeks gestational age (GA; n=30 infants), monocyte subtypes were identified by Flow Cytometry at birth and throughout the postnatal course including intracellular TNF expression upon LPS stimulation. Complementing these measurements, cytokine end growth factor expression profiles (Luminex® xMAP®; n=110 infants) as well as gene expression profiles (CodeLinkTM Human I Bioarray; n=22) were characterized at birth. Results: The abundance of monocyte subtypes differed between preterm and term neonates at birth. Specifically, CD14++CD16+ (intermediate) monocytes demonstrated a dependency on PMA and elevated levels of nonclassical (CD14+CD16++) monocytes characterized preterm infants with developing BPD. Postnatally, lung injury was associated with an increase in intermediate monocytes, while high levels of nonclassical monocytes persisted. Both subtypes were revealed as the main source of intracellular TNF-α expression in the preterm infant. We identified a cytokine and growth factor expression profile in cord blood specimen of preterm infants with developing BPD that corresponded to the disease-dependent regulation of monocyte abundances. Multivariate modeling of protein profiles revealed FGF2, sIL-2 Rα, MCP-1, MIP1a, and TNF-α as predictors of BPD when considering GA. Transcriptome analysis demonstrated genes predicting BPD to be overrepresented in inflammatory pathways with increased disease severity characterized by the regulation of immune and defense response pathways and upstream regulator analysis confirmed TNF-α, interleukin (IL) -6, and interferon α as the highest activated cytokines in more severe disease. Whereas all BPD cases showed downstream activation of chemotaxis and activation of inflammatory response pathways, more severe cases were characterized by an additional activation of reactive oxygen species (ROS) synthesis. Discussion: In the present study, we identified the early postnatal presence of nonclassical (CD14+CD16++) and intermediate (CD14++CD16+) monocytes as a critical characteristic of BPD development including a specific response pattern of monocyte subtypes to lung injury. Pathophysiological insight was provided by the protein and transcriptome signature identified at birth, centered around monocyte and corresponding granulocyte activation and highlighting TNFα as a critical regulator in infants with developing BPD. The disease severity-dependent expression patterns could inform future diagnostic and treatment strategies targeting the monocytic cell and its progeny.


Assuntos
Displasia Broncopulmonar , Doenças do Recém-Nascido , Lesão Pulmonar , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Monócitos , Fator de Necrose Tumoral alfa/genética , Displasia Broncopulmonar/genética , Citocinas , Interleucina-6
3.
Nat Commun ; 9(1): 2929, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050033

RESUMO

Genetic, epigenetic, and environmental factors contribute to the multifactorial disorder progressive supranuclear palsy (PSP). Here, we study epigenetic changes by genome-wide analysis of DNA from postmortem tissue of forebrains of patients and controls and detect significant (P < 0.05) methylation differences at 717 CpG sites in PSP vs. controls. Four-hundred fifty-one of these sites are associated with protein-coding genes. While differential methylation only affects a few sites in most genes, DLX1 is hypermethylated at multiple sites. Expression of an antisense transcript of DLX1, DLX1AS, is reduced in PSP brains. The amount of DLX1 protein is increased in gray matter of PSP forebrains. Pathway analysis suggests that DLX1 influences MAPT-encoded Tau protein. In a cell system, overexpression of DLX1 results in downregulation of MAPT while overexpression of DLX1AS causes upregulation of MAPT. Our observations suggest that altered DLX1 methylation and expression contribute to pathogenesis of PSP by influencing MAPT.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Proteínas de Homeodomínio/metabolismo , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Fatores de Transcrição/metabolismo , Idoso , Idoso de 80 Anos ou mais , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Fatores de Transcrição/genética , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Front Microbiol ; 6: 1199, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579105

RESUMO

Listeria monocytogenes is a bacterial pathogen and causative agent for the foodborne infection listeriosis, which is mainly a threat for pregnant, elderly, or immunocompromised individuals. Due to its ability to invade and colonize diverse eukaryotic cell types including cells from invertebrates, L. monocytogenes has become a well-established model organism for intracellular growth. Almost 10 years ago, we and others presented the first whole-genome microarray-based intracellular transcriptome of L. monocytogenes. With the advent of newer technologies addressing transcriptomes in greater detail, we revisit this work, and analyze the intracellular transcriptome of L. monocytogenes during growth in murine macrophages using a deep sequencing based approach. We detected 656 differentially expressed genes of which 367 were upregulated during intracellular growth in macrophages compared to extracellular growth in Brain Heart Infusion broth. This study confirmed ∼64% of all regulated genes previously identified by microarray analysis. Many of the regulated genes that were detected in the current study involve transporters for various metals, ions as well as complex sugars such as mannose. We also report changes in antisense transcription, especially upregulations during intracellular bacterial survival. A notable finding was the detection of regulatory changes for a subset of temperate A118-like prophage genes, thereby shedding light on the transcriptional profile of this bacteriophage during intracellular growth. In total, our study provides an updated genome-wide view of the transcriptional landscape of L. monocytogenes during intracellular growth and represents a rich resource for future detailed analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA